Neutrino Mixing #### A REVIEW GOES HERE - Check our WWW List of Reviews ### (A) Neutrino fluxes and event ratios #### Events (observed/expected) from accelerator u_{μ} experiments. Some neutrino oscillation experiments compare the flux in two or more detectors. This is usually quoted as the ratio of the event rate in the far detector to the expected rate based on an extrapolation from the near detector in the absence of oscillations. | <u>VALUE</u> | DOCUMENT ID | | TECN | COMMENT | |-----------------------------------|--|------------------|-------------|--| | • • • We do not use the following | , fits, lim | nits, etc. • • • | | | | 0.71 ± 0.08 0.64 ± 0.05 | ¹ AHN
² MICHAEL | | K2K
MINS | K2K to Super-K
All charged current events | | $0.71^{+0.08}_{-0.09}$ | ³ ALIU | 05 | K2K | KEK to Super-K | | $0.70 {}^{+ 0.10}_{- 0.11}$ | ⁴ AHN | 03 | K2K | KEK to Super-K | $^{^1}$ Based on the observation of 112 events when $158.1^{+9.2}_{-8.6}$ were expected without oscillations. Including not only the number of events but also the shape of the energy distribution, the evidence for oscillation is at the level of about 4.3 σ . Supersedes ALIU 05. #### Events (observed/expected) from reactor $\overline{\nu}_e$ experiments. The quoted values are the ratios of the measured reactor $\overline{\nu}_e$ event rate at the quoted distances, and the rate expected without oscillations. The expected rate is based on the experimental data for the most significant reactor fuels (235 U, 239 Pu, 241 Pu) and on calculations for 238 U. A recent re-evaluation of the spectral conversion of electron to $\overline{\nu}_e$ in MUELLER 11 results in an upward shift of the reactor $\overline{\nu}_e$ spectrum by 3% and, thus, might require revisions to the ratios listed in this table. | VALUE | | DOCUMENT ID | | <u>TECN</u> | COMMENT | |-------------------------------------|-------|-----------------|-------|-------------|--| | $0.944 \pm 0.007 \pm 0.003$ | 1 | AN | 13 | DAYA | DayaBay, Llng Ao/Ao II reactors | | ullet $ullet$ We do not use the | e fol | lowing data for | avera | ges, fits, | limits, etc. • • • | | $0.944 \pm 0.016 \pm 0.040$ | 2 | ABE | 12 | DCHZ | Chooz reactors | | $0.920 \pm 0.009 \pm 0.014$ | 3 | AHN | 12 | RENO | Yonggwang reactors | | $0.940 \pm 0.011 \pm 0.004$ | 4 | AN | 12 | DAYA | DayaBay, Ling Ao/Ao II reactors | | $1.08 \pm 0.21 \pm 0.16$ | 5 | DENIZ | 10 | TEXO | Kuo-Sheng reactor, 28 m | | $0.658 \!\pm\! 0.044 \!\pm\! 0.047$ | 6 | ARAKI | 05 | KLND | Japanese react. \sim 180 km | | $0.611 \pm 0.085 \pm 0.041$ | | EGUCHI | 03 | KLND | Japanese react. \sim 180 km | | $1.01\ \pm0.024\!\pm\!0.053$ | 8 | BOEHM | 01 | | Palo Verde react. 0.75–0.89 km | | $1.01\ \pm0.028\!\pm\!0.027$ | | APOLLONIO | 99 | CHOZ | Chooz reactors 1 km | | $0.987 \pm 0.006 \pm 0.037$ | 10 | GREENWOOD | 96 | | Savannah River, 18.2 m | | $0.988 \pm 0.004 \pm 0.05$ | | ACHKAR | 95 | CNTR | Bugey reactor, 15 m | | $0.994 \pm 0.010 \pm 0.05$ | | ACHKAR | 95 | CNTR | Bugey reactor, 40 m | | $0.915 \pm 0.132 \pm 0.05$ | | ACHKAR | 95 | CNTR | Bugey reactor, 95 m | | $0.987 \pm 0.014 \pm 0.027$ | 11 | DECLAIS | 94 | CNTR | Bugey reactor, 15 m | | $0.985 \!\pm\! 0.018 \!\pm\! 0.034$ | | KUVSHINN | 91 | CNTR | Rovno reactor | | $1.05 \pm 0.02 \pm 0.05$ | | VUILLEUMIER | 82 | | Gösgen reactor | | $0.955 \pm 0.035 \pm 0.110$ | | KWON | 81 | | $\overline{\nu}_e p \rightarrow e^+ n$ | | 0.89 ± 0.15 | 12 | BOEHM | 80 | | $\overline{\nu}_e p \rightarrow e^+ n$ | $^{^1}$ AN 13 use six identical detectors, with three placed near the reactor cores (flux-weighted baselines of 470 and 576 m) and the remaining three at the far hall (at the flux averaged distance of 1648 m from all six reactor cores) to determine the mixing angle θ_{13} using the $\overline{\nu}_e$ observed interaction rate ratios. This rate-only analysis excludes the no-oscillation hypothesis at 7.7 standard deviations. The value of $\Delta m_{31}^2=2.32\times 10^{-3}~\text{eV}^2$ was assumed in the analysis. This is an improved result (2.5 times increase in statistics) compared to AN 12. NODE=S067 NODE=\$067200 NODE=S067250 NODE=S067AER NODE=S067AER NODE=S067AER NODE=S067AER;LINKAGE=AN NODE=S067AER;LINKAGE=MI ${\small \mathsf{NODE}}{=}{\small \mathsf{S067AER}}; \\ \mathsf{LINKAGE}{=}{\small \mathsf{AL}}$ NODE=S067AER;LINKAGE=AH NODE=S067RER NODE=S067RER NODE=S067RER OCCUR=2 OCCUR=3 OCCUR=4 NODE=S067RER;LINKAGE=NA $^{^2}$ This ratio is based on the observation of 215 events compared to an expectation of 336 \pm 14 without oscillations. See also ADAMSON 08. $^{^{350\,\}pm\,14}$ Without oscillations. See also No. 11.3. This ratio is based on the observation of 107 events at the far detector 250 km away from KEK, and an expectation of $^{151}_{-10}$. $^{^4}$ This ratio is based on the observation of 56 events with an expectation of $80.1^{+6.2}_{-5.4}$ 2 ABE 12 determine the $\overline{\nu}_e$ interaction rate in a single detector, located 1050 m from the cores of two reactors. The rate normalization is fixed by the results of the Bugey4 reactor experiment, thus avoiding any dependence on possible very short baseline oscillations. 3 AHN 12 use two identical detectors, placed at flux weighted distances of 408.56 m and 1433.99m from six reactor cores, to determine the $\overline{\nu}_e$ interaction rate ratio. 4 AN 12 use six identical detectors with three placed near the reactor cores (flux-weighted baselines of 470 m and 576 m) and the remaining three at the far hall (at the flux averaged distance of 1648 m from all six reactor cores) to determine the $\overline{\nu}_e$ interaction rate ratios. Superseded by AN 13. 5 DENIZ 10 observe reactor $\overline{\nu}_e\,e$ scattering with recoil kinetic energies 3–8 MeV using CsI(TI) detectors. The observed rate is consistent with the Standard Model prediction, leading to a constraint on $\sin^2\!\theta_W=0.251\pm0.031({\rm stat})\pm0.024({\rm sys})$. ⁶ Updated result of KamLAND, including the data used in EGUCHI 03. Note that the survival probabilities for different periods are not directly comparable because the effective baseline varies with power output of the reactor sources involved, and there were large variations in the reactor power production in Japan in 2003. 7 EGUCHI 03 observe reactor neutrino disappearance at $\sim 180\,\mathrm{km}$ baseline to various Japanese nuclear power reactors. ⁸ BOEHM 01 search for neutrino oscillations at 0.75 and 0.89 km distance from the Palo Verde reactors. 9 APOLLONIO 99, APOLLONIO 98 search for neutrino oscillations at 1.1 km fixed distance from Chooz reactors. They use $\overline{\nu}_e \, p \to e^+ \, n$ in Gd-loaded scintillator target. APOLLONIO 99 supersedes APOLLONIO 98. See also APOLLONIO 03 for detailed description. 10 GREENWOOD 96 search for neutrino oscillations at 18 m and 24 m from the reactor at Savannah River. 11 DECLAIS 94 result based on integral measurement of neutrons only. Result is ratio of measured cross section to that expected in standard V-A theory. Replaced by ACHKAR 95. $^{12}\,\mathrm{KWON}$ 81 represents an analysis of a larger set of data from the same experiment as BOEHM 80 . #### Atmospheric neutrinos - Neutrinos and antineutrinos produced in the atmosphere induce μ -like and e-like events in underground detectors. The ratio of the numbers of the two kinds of events is defined as μ/e . It has the advantage that systematic effects, such as flux uncertainty, tend to cancel, for both experimental and theoretical values of the ratio. The "ratio of the ratios" of experimental to theoretical μ/e , $R(\mu/e)$, or that of experimental to theoretical $\mu/total$, $R(\mu/total)$ with total $=\mu+e$, is reported below. If the actual value is not unity, the value obtained in a given experiment may depend on the experimental conditions. In addition, the measured "up-down asymmetry" for μ (Nup(μ)/Ndown(μ)) or e (Nup(e)/Ndown(e)) is reported. The expected "up-down asymmetry" is nearly unity if there is no neutrino oscillation #### $R(\mu/e) = (Measured Ratio \mu/e) / (Expected Ratio \mu/e)$ | VALUE | DOCUMENT ID | | TECN | COMMENT | |--|---|-------------|-----------|---| | ullet $ullet$ We do not use the following | llowing data for averages | s, fits, | limits, e | etc. • • • | | $0.658\!\pm\!0.016\!\pm\!0.035$ | ¹ ASHIE | 05 | SKAM | sub-GeV | | $0.702^{igoplus 0.032}_{-0.030} \pm 0.101$ | ² ASHIE | 05 | SKAM | multi-GeV | | $0.69 \pm 0.10 \pm 0.06$ | ³ SANCHEZ
⁴ FUKUDA | 03
96в | | Calorimeter raw data
Water Cherenkov | | $1.00 \pm 0.15 \pm 0.08$ | ⁵ DAUM | 95 | FREJ | Calorimeter | | $0.60 \ ^{+0.06}_{-0.05} \ \pm 0.05$ | ⁶ FUKUDA | 94 | KAMI | sub-GeV | | $0.57 \ {+0.08\atop -0.07} \ \pm 0.07$ | ⁷ FUKUDA | 94 | KAMI | multi-Gev | | | ⁸ BECKER-SZ | 92 B | IMB | Water Cherenkov | 1 ASHIE 05 results are based on an exposure of 92 kton yr during the complete Super-Kamiokande I running period. The analyzed data sample consists of fully-contained single-ring e-like events with 0.1 GeV/c < p_e and μ -like events 0.2 GeV/c < p_{μ} , both having a visible energy < 1.33 GeV. These criteria match the definition used by FUKUDA 94. 2 ASHIE 05 results are based on an exposure of 92 kton yr during the complete Super-Kamiokande I running period. The analyzed data sample consists of fully-contained single-ring events with visible energy > 1.33 GeV and partially-contained events. All partially-contained events are classified as $\mu\text{-like}.$ 3 SANCHEZ 03 result is based on an exposure of 5.9 kton yr, and updates ALLISON 99 result. The analyzed data sample consists of fully-contained e-flavor and $\mu\text{-flavor}$ events having lepton momentum > 0.3 GeV/c.
NODE=S067RER;LINKAGE=AB NODE=S067RER;LINKAGE=AH NODE=S067RER;LINKAGE=AN NODE=S067RER;LINKAGE=DE NODE=S067RER;LINKAGE=AR NODE=S067RER;LINKAGE=GE NODE=S067RER;LINKAGE=BH NODE=S067RER;LINKAGE=RA NODE=S067RER;LINKAGE=GW NODE=S067RER;LINKAGE=C NODE=S067RER;LINKAGE=B NODE=S067RFX NODE=S067RFX NODE=S067RFX NODE=S067DU0 NODE=S067DU0 OCCUR=2 OCCUR=2 OCCUR=3 NODE=S067DU0;LINKAGE=AS NODE=S067DU0;LINKAGE=AH NODE=S067DU0;LINKAGE=SA ⁴ FUKUDA 96B studied neutron background in the atmospheric neutrino sample observed in the Kamiokande detector. No evidence for the background contamination was found. 5 DAUM 95 results are based on an exposure of 2.0 kton yr which includes the data used by BERGER 90B. This ratio is for the contained and semicontained events. DAUM 95 also report $R(\mu/e)=0.99\pm0.13\pm0.08$ for the total neutrino induced data sample which includes upward going stopping muons and horizontal muons in addition to the contained and semicontained events. ⁶ FUKUDA 94 result is based on an exposure of 7.7 kton yr and updates the HIRATA 92 result. The analyzed data sample consists of fully-contained e-like events with 0.1 < $p_e < 1.33~{\rm GeV}/c$ and fully-contained μ -like events with 0.2 < $p_{\mu} < 1.5~{\rm GeV}/c$. ⁷ FUKUDA 94 analyzed the data sample consisting of fully contained events with visible energy > 1.33 GeV and partially contained μ -like events. ⁸ BECKER-SZENDY 92B reports the fraction of nonshowering events (mostly muons from atmospheric neutrinos) as $0.36 \pm 0.02 \pm 0.02$, as compared with expected fraction $0.51 \pm 0.01 \pm 0.05$. After cutting the energy range to the Kamiokande limits, BEIER 92 finds $R(\mu/e)$ very close to the Kamiokande value. NODE=S067DU0;LINKAGE=E NODE=S067DU0;LINKAGE=C NODE=S067DU0;LINKAGE=F NODE=S067DU0;LINKAGE=AA NODE=S067DU0;LINKAGE=BS $R(\nu_{\mu}) = (Measured Flux of \nu_{\mu}) / (Expected Flux of \nu_{\mu})$ VALUE DOCUMENT ID TECH COMMENT | VALUE | DOCUMENT ID | | | COMMENT | |-----------------------------------|-----------------------|--------|------------|--| | ullet $ullet$ We do not use the f | ollowing data for | averag | ges, fits, | limits, etc. • • • | | 0.84 ± 0.12 | ¹ ADAMSON | 06 | MINS | MINOS atmospheric | | $0.72\!\pm\!0.026\!\pm\!0.13$ | ² AMBROSIO | 01 | MCRO | upward through-going | | $0.57 \pm 0.05 \pm 0.15$ | ³ AMBROSIO | 00 | MCRO | upgoing partially contained | | $0.71 \pm 0.05 \pm 0.19$ | ⁴ AMBROSIO | 00 | MCRO | downgoing partially contained + upgoing stopping | | $0.74\!\pm\!0.036\!\pm\!0.046$ | ⁵ AMBROSIO | 98 | MCRO | Streamer tubes | | | ⁶ CASPER | 91 | IMB | Water Cherenkov | | | ⁷ AGLIETTA | 89 | NUSX | | | $0.95\!\pm\!0.22$ | ⁸ BOLIEV | 81 | | Baksan | | 0.62 ± 0.17 | CROUCH | 78 | | Case Western/UCI | | | | | | | 1 ADAMSON 06 uses a measurement of 107 total neutrinos compared to an expected rate of 127 \pm 13 without oscillations. 2 AMBROSIO 01 result is based on the upward through-going muon tracks with $E_{\mu}>1$ GeV. The data came from three different detector configurations, but the statistics largely dominated by the full detector run, from May 1994 to December 2000. The total live time, normalized to the full detector configuration, is 6.17 years. The first error is the statistical error, the second is the systematic error, dominated by the theoretical error in the predicted flux. ³ AMBROSIO 00 result is based on the upgoing partially contained event sample. It came from 4.1 live years of data taking with the full detector, from April 1994 to February 1999. The average energy of atmospheric muon neutrinos corresponding to this sample is 4 GeV. The first error is statistical, the second is the systematic error, dominated by the 25% theoretical error in the rate (20% in the flux and 15% in the cross section, added in quadrature). Within statistics, the observed deficit is uniform over the zenith angle. ⁴ AMBROSIO 00 result is based on the combined samples of downgoing partially contained events and upgoing stopping events. These two subsamples could not be distinguished due to the lack of timing information. The result came from 4.1 live years of data taking with the full detector, from April 1994 to February 1999. The average energy of atmospheric muon neutrinos corresponding to this sample is 4 GeV. The first error is statistical, the second is the systematic error, dominated by the 25% theoretical error in the rate (20% in the flux and 15% in the cross section, added in quadrature). Within statistics, the observed deficit is uniform over the zenith angle. 5 AMBROSIO 98 result is for all nadir angles and updates AHLEN 95 result. The lower cutoff on the muon energy is 1 GeV. In addition to the statistical and systematic errors, there is a Monte Carlo flux error (theoretical error) of ± 0.13 . With a neutrino oscillation hypothesis, the fit either to the flux or zenith distribution independently yields $\sin^2\!2\theta{=}1.0$ and $\Delta(m^2)\sim \,$ a few times 10^{-3} eV 2 . However, the fit to the observed zenith distribution gives a maximum probability for χ^2 of only 5% for the best oscillation hypothesis. 6 CASPER 91 correlates showering/nonshowering signature of single-ring events with parent atmospheric-neutrino flavor. They find nonshowering ($\approx \nu_{\mu}$ induced) fraction is 0.41 \pm 0.03 \pm 0.02, as compared with expected 0.51 \pm 0.05 (syst). ⁷ AGLIETTA 89 finds no evidence for any anomaly in the neutrino flux. They define $\rho=(\text{measured number of }\nu_e\text{'s})/(\text{measured number of }\nu_\mu\text{'s})$. They report $\rho(\text{measured})=\rho(\text{expected})=0.96^{+0.32}_{-0.28}$. 8 From this data BOLIEV 81 obtain the limit $\Delta(m^2) \le 6\times 10^{-3}~{\rm eV}^2$ for maximal mixing, $\nu_\mu \not\to ~\nu_\mu$ type oscillation. NODE=S067DU1 NODE=S067DU1 OCCUR=2 NODE=S067DU1;LINKAGE=AD NODE=S067DU1;LINKAGE=RS NODE=S067DU1;LINKAGE=K1 NODE=S067DU1;LINKAGE=K2 NODE=S067DU1;LINKAGE=D1 NODE=S067DU1;LINKAGE=D NODE=S067DU1;LINKAGE=C NODE=S067DU1;LINKAGE=B | $R(\mu/\text{total}) = (Measured}_{VALUE}$ | Ratio μ/total) / (Expected Ratio μ/total) DOCUMENT ID TECN COMMENT | NODE=S067DU9
NODE=S067DU9 | |---|---|------------------------------| | | owing data for averages, fits, limits, etc. • • • | | | $1.1^{+0.07}_{-0.12}\!\pm\!0.11$ | ¹ CLARK 97 IMB multi-GeV | | | ¹ CLARK 97 obtained this | result by an analysis of fully contained and partially contained Cherenkov detector with visible energy $> 0.95~{\rm GeV}.$ | NODE=S067DU9;LINKAGE=K | | $N_{ m up}(\mu)/N_{ m down}(\mu)$ | DOCUMENT ID TECN COMMENT | NODE=S067UDM
NODE=S067UDM | | ullet $ullet$ We do not use the following | owing data for averages, fits, limits, etc. • • • | | | 0.71 ± 0.06 | ¹ ADAMSON 12B MINS contained-vertex muons | | | $0.551^{igoplus 0.035}_{-0.033}\!\pm\!0.004$ | ² ASHIE 05 SKAM multi-GeV | | | tector in 2,553 live days | the atmospheric neutrino results obtained with MINOS far de-
(an exposure of 37.9 kton·yr). This result is obtained with a contained-vertex muons. The quoted error is statistical only. | NODE=S067UDM;LINKAGE=AD | | Kamiokande I running posingle-ring μ -like events wall partially-contained evaluate with $-1 < \cos(\text{zenith ancos}(\text{zenith angle}) < 1$. The | red on an exposure of 92 kton yr during the complete Supereriod. The analyzed data sample consists of fully-contained with visible energy > 1.33 GeV and partially-contained events. ents are classified as μ -like. Upward-going events are those gle) < -0.2 and downward-going events are those with $0.2 <$ e μ -like up-down ratio for the multi-GeV data deviates from 1 mospheric ν_{μ} oscillations) by more than 12 standard deviations. | NODE=S067UDM;LINKAGE=AS | | N _{up} (e)/N _{down} (e)
VALUE | DOCUMENT ID TECN COMMENT | NODE=S067UDE
NODE=S067UDE | | ullet $ullet$ We do not use the following | owing data for averages, fits, limits, etc. • • • | | | $0.961^{+0.086}_{-0.079}{\pm}0.016$ | ¹ ASHIE 05 SKAM multi-GeV | | | Kamiokande I running posingle-ring e-like events where w with w | ded on an exposure of 92 kton yr during the complete Super-eriod. The analyzed data sample consists of fully-contained with visible energy > 1.33 GeV. Upward-going events are those angle) < -0.2 and downward-going events are those with 0.2. The e-like up-down ratio for the multi-GeV data is consistent or no atmospheric ν_e oscillations). | NODE=S067UDE;LINKAGE=AS | | | ured up/down; μ) / (Expected up/down; μ) DOCUMENT ID TECN COMMENT | NODE=S067MER
NODE=S067MER | | ullet $ullet$ We do not use the following | owing data for averages, fits, limits, etc. • • • | | | **** | ADAMSON 12B MINS contained-vertex muons | | | $0.62^{+0.19}_{-0.14} \pm 0.02$ | ADAMSON 06 MINS atmospheric $ u$ with far detector | | | tector in 2,553 live days | the atmospheric neutrino results obtained with MINOS far de-
(an exposure of 37.9 kton·yr). This result is obtained with a contained-vertex muons. The expected ratio is calculated with | NODE=S067MER;LINKAGE=AM | | ² ADAMSON 06 result is o | btained with the MINOS far detector with an exposure of 4.54 tio is calculated with no neutrino oscillation. | NODE=S067MER;LINKAGE=AD | | $N(\mu^+)/N(\mu^-)$ VALUE | DOCUMENT ID TECN COMMENT | NODE=S067MPM
NODE=S067MPM | | ullet $ullet$ We do not use the following |
owing data for averages, fits, limits, etc. • • • | | | $0.46 ^{+ 0.05}_{- 0.04}$ | 1,2 ADAMSON 12B MINS contained-vertex muons | | | $0.63^{igoplus 0.09}_{-0.08}$ | 1,3 ADAMSON 12B MINS $ u$ -induced rock-muons | OCCUR=2 | | detector in 2,553 live da $N(\mu^+)/N(\mu^-)$ represents | | NODE=S067MPM;LINKAGE=AD | | ² This result is obtained wit muons. The quoted error | h a charge-separated sample of high resolution contained-vertex is statistical only. | NODE=S067MPM;LINKAGE=AN | | | h a charge-separated sample of high resolution neutrino-induced | NODE=S067MPM;LINKAGE=AM | #### $R(\mu^+/\mu^-) = (Measured N(\mu^+)/N(\mu^-)) / (Expected N(\mu^+)/N(\mu^-))$ | VALUE | DOCUMENT ID | | TECN | COMMENT | | |--|------------------------|-------------|------------|---|---| | • • • We do not use the | e following data for | averag | ges, fits, | limits, etc. • • • | | | $0.93\!\pm\!0.09\!\pm\!0.09$ | 1,2 ADAMSON | 12 B | MINS | contained-vertex muons | I | | $1.29^{igoplus 0.19}_{-0.17}\!\pm\!0.16$ | 1,3 ADAMSON | 12 B | MINS | u-induced rock-muons | ı | | $1.03\!\pm\!0.08\!\pm\!0.08$ | ^{1,4} ADAMSON | 12 B | MINS | contained | | | $1.39 ^{+ 0.35 + 0.08}_{- 0.46 - 0.14}$ | ⁵ ADAMSON | 07 | MINS | Upward and horizontal μ with far detector | | | $0.96^{+0.38}_{-0.27}\pm0.15$ | ⁶ ADAMSON | 06 | MINS | atmospheric $ u$ with far detector | | ¹ADAMSON 12B reports the atmospheric neutrino results obtained with MINOS far detector in 2,553 live days (an exposure of 37.9 kton.yr). The muon charge ratio ${\rm N}(\mu^+)/{\rm N}(\mu^-)$ represents the $\overline{ u}_\mu/ u_\mu$ ratio. As far as the same oscillation parameters are used for ν s and $\overline{\nu}$ s, the expected $\overline{\nu}_{\mu}/\nu_{\mu}$ ratio is almost entirely independent of any 2 This result is obtained with a charge-separated sample of high resolution contained-vertex muons. This result is obtained with a charge-separated sample of high resolution neutrino-induced ⁴The charge-separated samples of high resolution contained-vertex muons and neutrinoinduced rock-muons are combined to obtain this result which is consistent with unity. 5 ADAMSON 07 result is obtained with the MINOS far detector in 854.24 live days, based on neutrino-induced upward-going and horizontal muons. This result is consistent with CPT conservation 6 ADAMSON 06 result is obtained with the MINOS far detector with an exposure of 4.54 kton yr, based on contained events. The expected ratio is calculated by assuming the same oscillation parameters for neutrinos and antineutrinos. #### Solar neutrinos - Solar neutrinos are produced by thermonuclear fusion reactions in the Sun. Radiochemical experiments measure particular combinations of fluxes from various neutrino-producing reactions, whereas water-Cherenkov experiments mainly measure a flux of neutrinos from decay of ⁸B. Solar neutrino fluxes are composed of all active neutrino species, $\nu_e, \ \nu_\mu, \ { m and}$ $u_{ au}$. In addition, some other mechanisms may cause antineutrino components in solar neutrino fluxes. Each measurement method is sensitive to a particular component or a combination of components of solar neutrino fluxes. For details, see Section 13.4 of Reviews, Tables, and Plots. #### ν_e Capture Rates from Radiochemical Experiments 1 SNU (Solar Neutrino Unit) = 10^{-36} captures per atom per second. VALUE (SNU) DOCUMENT ID TECN COMMENT ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet $73.4 \begin{array}{l} +6.1 \\ -6.0 \end{array} \begin{array}{l} +3.7 \\ -4.1 \end{array}$ ¹ KAETHER **GALX** reanalysis 67.6 ±4.0 ±3.2 ² KAETHER 10 GNO+GALX reanalysis combined $65.4 \begin{array}{c} +3.1 \\ -3.0 \end{array} \begin{array}{c} +2.6 \\ -2.8 \end{array}$ ³ ABDURASHI... 09 $\mathsf{SAGE} \quad ^{71}\mathsf{Ga} \, \to \, ^{71}\mathsf{Ge}$ 62.9 $^{+5.5}_{-5.3}$ ± 2.5 ⁴ ALTMANN $\mathsf{GNO} \quad ^{71}\mathsf{Ga} \rightarrow \ ^{71}\mathsf{Ge}$ 05 69.3 ±4.1 ±3.6 ⁵ ALTMANN GNO GNO + GALX combined 05 77.5 $\pm 6.2 \begin{array}{c} +4.3 \\ -4.7 \end{array}$ $\text{GALX} \quad ^{71}\text{Ga} \rightarrow \ ^{71}\text{Ge}$ ⁶ HAMPEL 99 HOME $^{37}CI \rightarrow ^{37}Ar$ $2.56 \pm 0.16 \pm 0.16$ ⁷ CLEVELAND 98 ¹KAETHER 10 reports the reanalysis results of a complete GALLEX data (GALLEX I+II+III+IV, reported in HAMPEL 99) based on the event selection with a new pulse shape analysis, which provides a better background reduction than the rise time analysis adopted in HAMPEL 99. $^2\,\text{Combined}$ result of GALLEX I+II+III+IV reanalysis and GNO I+II+III (ALTMANN 05). ³ ABDURASHITOV 09 reports a combined analysis of 168 extractions of the SAGE solar neutrino experiment during the period January 1990 through December 2007, and updates the ABDURASHITOV 02 result. The data are consistent with the assumption that the solar neutrino production rate is constant in time. Note that a $\sim 15\%$ systematic uncertainty in the overall normalization may be added to the ABDURASHITOV 09 result, because calibration experiments for gallium solar neutrino measurements using intense 51 Cr (twice by GALLEX and once by SAGE) and 37 Ar (by SAGE) result in an average ratio of 0.87 \pm 0.05 of the observed to calculated rates. ALTMANN 05 reports the complete result from the GNO solar neutrino experiment (GNO I+II+III), which is the successor project of GALLEX. Experimental technique of GNO is essentially the same as that of GALLEX. The run data cover the period 20 May 1998 through 9 April 2003. NODE=S067RPM NODE=S067RPM OCCUR=2 OCCUR=3 NODE=S067RPM;LINKAGE=AA NODE=S067RPM;LINKAGE=AO NODE=S067RPM:LINKAGE=AP NODE=S067RPM;LINKAGE=AQ NODE=S067RPM;LINKAGE=AM NODE=S067RPM;LINKAGE=AD NODE=S067SLR NODE=S067SLR NODE=S067SNU NODE=S067SNU NODE=S067SNU OCCUR=2 OCCUR=2 NODE=S067SNU;LINKAGE=KA NODE=S067SNU;LINKAGE=KE NODE=S067SNU;LINKAGE=AB NODE=S067SNU;LINKAGE=AL 5 Combined result of GALLEX I+II+III+IV (HAMPEL 99) and GNO I+II+III. 6 HAMPEL 99 report the combined result for GALLEX I+II+III+IV (65 runs in total), which update the HAMPEL 96 result. The GALLEX IV result (12 runs) is 118.4 \pm 17.8 \pm 6.6 SNU. (HAMPEL 99 discuss the consistency of partial results with the mean.) The GALLEX experimental program has been completed with these runs. The total run data cover the period 14 May 1991 through 23 January 1997. A total of 300 71 Ge events were observed. Note that a $\sim 15\%$ systematic uncertainty in the overall normalization may be added to the HAMPEL 99 result, because calibration experiments for gallium solar neutrino measurements using intense 51 Cr (twice by GALLEX and once by SAGE) and 37 Ar (by SAGE) result in an average ratio of 0.87 ± 0.05 of the observed to calculated rates. $^7\,\text{CLEVELAND}$ 98 is a detailed report of the ^{37}Cl experiment at the Homestake Mine. The average solar neutrino-induced ³⁷Ar production rate from 108 runs between 1970 and 1994 updates the DAVIS 89 result. NODE=S067SNU:LINKAGE=MC NODE=S067SNU;LINKAGE=AT NODE=S067SNU;LINKAGE=HP # ϕ_{ES} (8B) $^8\mathrm{B}$ solar-neutrino flux measured via $\nu\,e$ elastic scattering. This process is sensitive to all active neutrino flavors, but with reduced sensitivity to $\nu_{\mu},~\nu_{ au}$ due to the crosssection difference, $\sigma(\nu_{\mu,\tau}\,{\rm e})\sim 0.16\sigma(\nu_{\rm e}\,{\rm e})$. If the $^8{\rm B}$ solar-neutrino flux involves nonelectron flavor active neutrinos, their contribution to the flux is \sim 0.16 times of NODE=S067SES NODE=S067SES | $VALUE (10^6 \text{ cm}^{-2} \text{s}^{-1})$ | DOCUMENT ID | | TECN | COMMENT | NODE=S067SES | |---|----------------------|-----------------------------------|-------------------------|---|--------------| | • • • We do not use the following data for averages, f | | ages, fits | s, limits, etc. • • • | | | | $2.32\!\pm\!0.04\!\pm\!0.05$ | ¹ ABE | 11 | SKAM | SK-III average flux | | | $2.41\!\pm\!0.05{+0.16\atop -0.15}$ | ² ABE | 11 | SKAM | SK-II average flux | OCCUR=2 | | $2.38\!\pm\!0.02\!\pm\!0.08$ | ³ ABE | 11 | SKAM | SK-I average flux | OCCUR=3 | | $2.77 \pm 0.26 \pm 0.32$ | ⁴ ABE | 11 B | KLND | average flux | | | $2.4 \pm 0.4 \pm 0.1$ | ⁵ BELLINI | 10A | BORX | average flux | | | $1.77^{+0.24+0.09}_{-0.21-0.10}$ | ⁶ AHARMIM | 80 | SNO | Phase III | | | $2.38\!\pm\!0.05\!+\!0.16\\-0.15$ | ⁷ CRAVENS | 80 | SKAM | average flux | | | $2.35 \pm 0.02 \pm 0.08$ | ⁸ HOSAKA | 06 | SKAM | average flux | | | $2.35\!\pm\!0.22\!\pm\!0.15$ | ⁹ AHARMIM | 05A | SNO | Salty D ₂ O; ⁸ B shape not con-
strained | | | $2.34\!\pm\!0.23^{\displaystyle +0.15}_{\displaystyle -0.14}$ | ⁹ AHARMIM | 05A | SNO | Salty D ₂ O; ⁸ B shape constrained | OCCUR=2 | | $2.39^{+0.24}_{-0.23}\!\pm\!0.12$ | ¹⁰ AHMAD | 02 | SNO | average flux | | | $2.39\!\pm\!0.34 \!+\! 0.16 \\ -0.14$ | ¹¹ AHMAD | 01 | SNO | average flux | | | $2.80 \pm 0.19 \pm 0.33$ | ¹² FUKUDA | 96 | KAMI | average flux | | | 2.70 ± 0.27 | ¹² FUKUDA | 96 | KAMI | day flux | OCCUR=2 | | $2.87^{igoplus 0.27}_{igoplus 0.26}$ | ¹² FUKUDA | 96 | KAMI | night flux | OCCUR=3 | | | | 548 live days from August 4, 2006 | NODE=S067SES;LINKAGE=A1 | | | ¹ABE 11 reports the Super-Kamiokande-III results for 548 live days from August 4, 2006 to August 18, 2008. The analysis threshold is 5.0 MeV, but the event sample in the 5.0-6.5 MeV total electron range has a total live time of 298 days. ²ABE 11 recalculated the Super-Kamiokande-II results using ⁸B spectrum of WIN- ABE 11 recalculated the Super-Kamiokande-I results using ⁸B spectrum of WINTER 06A. ⁵ BELLINI 10A reports the Borexino result with 3 MeV energy threshold for scattered electrons. The data correspond to 345.3 live days with a target mass of 100 t, between July 15, 2007 and August 23, 2009. NODE=S067SES;LINKAGE=A2
NODE=S067SES;LINKAGE=A3 NODE=S067SES:LINKAGE=KA NODE=S067SES;LINKAGE=BE NODE=S067SES;LINKAGE=HA NODE=S067SES;LINKAGE=CR ⁴ABE 11B use a 123 kton-day exposure of the KamLAND liquid scintillation detector to measure the 8B solar neutrino flux. They utilize u-e elastic scattering above a reconstructed-energy threshold of 5.5 MeV, corresponding to 5 MeV electron recoil energy. 299 electron recoil candidate events are reported, of which 157 ± 23.6 are assigned to background. $^{^6\}mathrm{AHARMIM}$ 08 reports the results from SNO Phase III measurement using an array of ^{3}He proportional counters to measure the rate of NC interactions in heavy water, over the period between November 27, 2004 and November 28, 2006, corresponding to 385.17 live days. A simultaneous fit was made for the number of NC events detected by the proportional counters and the numbers of NC, CC, and ES events detected by the PMTs, where the spectral distributions of the ES and CC events were not constrained to the ⁸B shape. ⁷CRAVENS 08 reports the Super-Kamiokande-II results for 791 live days from December 2002 to October 2005. The photocathode coverage of the detector is 19% (reduced from 40% of that of Super-Kamiokande-I due to an accident in 2001). The analysis threshold for the average flux is 7 MeV. $^{8}\,\mathrm{HOSAKA}$ 06 reports the final results for 1496 live days with Super-Kamiokande-I between May 31, 1996 and July 15, 2001, and replace FUKUDA 02 results. The analysis threshold is 5 MeV except for the first 280 live days (6.5 MeV). $^9\,\mathrm{AHARMIM}$ 05A measurements were made with dissolved NaCl (0.195% by weight) in heavy water over the period between July 26, 2001 and August 28, 2003, corresponding to 391.4 live days, and update AHMED 04A. The CC, ES, and NC events were statistically separated. In one method, the ⁸B energy spectrum was not constrained. In the other method, the constraint of an undistorted ⁸B energy spectrum was added for comparison with AHMAD 02 results. 10 AHMAD 02 reports the 8 B solar-neutrino flux measured via $\nu\,e$ elastic scattering above the kinetic energy threshold of 5 MeV. The data correspond to 306.4 live days with SNO between November 2, 1999 and May 28, 2001, and updates AHMAD 01 results. 11 AHMAD 01 reports the 8 B solar-neutrino flux measured via νe elastic scattering above the kinetic energy threshold of 6.75 MeV. The data correspond to 241 live days with SNO between November 2, 1999 and January 15, 2001. 12 FUKUDA 96 results are for a total of 2079 live days with Kamiokande II and III from January 1987 through February 1995, covering the entire solar cycle 22, with threshold $E_e > 9.3 \, \text{MeV}$ (first 449 days), $> 7.5 \, \text{MeV}$ (middle 794 days), and $> 7.0 \, \text{MeV}$ (last 836 days). These results update the HIRATA 90 result for the average ⁸B solar-neutrino flux and HIRATA 91 result for the day-night variation in the ⁸B solar-neutrino flux. The total data sample was also analyzed for short-term variations: within experimental errors, no strong correlation of the solar-neutrino flux with the sunspot numbers was found. ### ϕ_{CC} (8B) $^8\mathrm{B}$ solar-neutrino flux measured with charged-current reaction which is sensitive exclusively to $\nu_{\rm e}$. | $VALUE (10^6 \text{ cm}^{-2} \text{s}^{-1})$ | DOCUMENT ID | | TECN | COMMENT | |--|----------------------|----------|---------|---| | • • • We do not use the following | g data for average | s, fits, | limits, | etc. • • • | | $1.67 {}^{+ 0.05 + 0.07}_{- 0.04 - 0.08}$ | ¹ AHARMIM | 80 | SNO | Phase III | | $1.68\!\pm\!0.06\!+\!0.08\\-0.09$ | ² AHARMIM | 05A | SNO | Salty D ₂ O; ⁸ B shape | | $1.72 \pm 0.05 \pm 0.11$ | ² AHARMIM | 05A | SNO | not const. Salty D ₂ O; ⁸ B shape constrained | | $1.76^{igoplus 0.06}_{-0.05}\!\pm\!0.09$ | ³ AHMAD | 02 | SNO | average flux | | $1.75 \pm 0.07 ^{+0.12}_{-0.11} \pm 0.05$ | ⁴ AHMAD | 01 | SNO | average flux | $^{ m 1}$ AHARMIM 08 reports the results from SNO Phase III measurement using an array of 3 He proportional counters to measure the rate of NC interactions in heavy water, over the period between November 27, 2004 and November 28, 2006, corresponding to 385.17 live days. A simultaneous fit was made for the number of NC events detected by the proportional counters and the numbers of NC, CC, and ES events detected by the PMTs, where the spectral distributions of the ES and CC events were not constrained to the $^8\mathrm{B}$ 2 AHARMIM 05A measurements were made with dissolved NaCl (0.195% by weight) in heavy water over the period between July 26, 2001 and August 28, 2003, corresponding to 391.4 live days, and update AHMED 04A. The CC, ES, and NC events were statistically separated. In one method, the ⁸B energy spectrum was not constrained. In the other method, the constraint of an undistorted ⁸B energy spectrum was added for comparison with AHMAD 02 results. 3 AHMAD 02 reports the SNO result of the ⁸B solar-neutrino flux measured with chargedcurrent reaction on deuterium, $\nu_e d \to ppe^-$, above the kinetic energy threshold of 5 MeV. The data correspond to 306.4 live days with SNO between November 2, 1999 and May 28, 2001, and updates AHMAD 01 results. The complete description of the SNO Phase I data set is given in AHARMIM 07. ⁴AHMAD 01 reports the first SNO result of the ⁸B solar-neutrino flux measured with the charged-current reaction on deuterium, $\nu_e d \to ppe^-$, above the kinetic energy threshold of 6.75 MeV. The data correspond to 241 live days with SNO between November 2, 1999 and January 15, 2001. ## ϕ_{NC} (8B) $^8\mathrm{B}$ solar neutrino flux measured with neutral-current reaction, which is equally sensitive to ν_e , ν_μ , and ν_τ . | $VALUE (10^6 \text{ cm}^{-2} \text{s}^{-1})$ | DOCUMENT ID | | TECN | COMMENT | |--|----------------------|--------|-----------|---| | \bullet \bullet We do not use the | following data fo | r aver | ages, fit | s, limits, etc. • • • | | $5.140 {}^{+ 0.160}_{- 0.158} {}^{+ 0.132}_{- 0.117}$ | ¹ AHARMIM | 10 | SNO | Phase I+II, low threshold | | $5.54 \begin{array}{l} +0.33 \\ -0.31 \end{array} \begin{array}{l} +0.36 \\ -0.34 \end{array}$ | ² AHARMIM | 08 | SNO | Phase III, prop. counter $+\ PMT$ | | $4.94 \pm 0.21 ^{+0.38}_{-0.34}$ | ³ AHARMIM | 05A | SNO | Salty D ₂ O; ⁸ B shape not const. | NODE=S067SES;LINKAGE=HO NODE=S067SES;LINKAGE=AR NODE=S067SES;LINKAGE=AH NODE=S067SES:LINKAGE=SA NODE=S067SES;LINKAGE=XF NODE=S067SCC NODE=S067SCC NODE=S067SCC OCCUR=2 NODE=S067SCC;LINKAGE=HA NODE=S067SCC;LINKAGE=AR NODE=S067SCC:LINKAGE=AH NODE=S067SCC;LINKAGE=SA NODE=S067SNC NODE=S067SNC NODE=S067SNC | | | | | | 6/25/2013 16:37 Page | |--|--|--|---|---|-------------------------| | $4.81 \pm 0.19 ^{+0.28}_{-0.27}$ | ³ AHARMIM | 05A S | SNO | Salty D ₂ O; ⁸ B shape constrained | OCCUR=2 | | $5.09 \begin{array}{c} +0.44 & +0.46 \\ -0.43 & -0.43 \end{array}$ | ⁴ AHMAD | 02 S | NO | average flux; ⁸ B shape const. | | | 6.42 $\pm 1.57 {}^{+ 0.55}_{- 0.58}$ | ⁴ AHMAD | 02 S | NO | average flux; ⁸ B shape not const. | OCCUR=2 | | "effective electron k
"binned-histogram u
the neutrino signal | kinetic energy" thre
unconstrained fit" v
observables were us | shold of
where bi | f 3.5 M
nned | is of SNO Phase I+II data with the MeV. This result is obtained with a probability distribution functions of ny model constraints on the shape | NODE=S067SNC;LINKAGE=AA | | ³ He proportional co
the period between I
live days. A simulta
proportional counter | orts the results from
bunters to measure
November 27, 2004
aneous fit was mad
rs and the numbers | the rate
and Nov
le for th
of NC, (| e of N
vembe
ne nun
CC, ar | III measurement using an array of C interactions in heavy water, over er 28, 2006, corresponding to 385.17 mber of NC events detected by the dES events detected by the PMTs, ents were not constrained to the ⁸ B | NODE=S067SNC;LINKAGE=HA | | ³ AHARMIM 05A me
heavy water over th
to 391.4 live days, ar
separated. In one n
method, the constra | e period between Ji
nd update AHMED
nethod, the ⁸ B ene
aint of an undistorte | uly 26, 2
04A. The
ergy spe | 2001 <i>a</i>
e <i>CC</i> ,
ctrum | solved NaCl (0.195% by weight) in and August 28, 2003, corresponding ES, and NC events were statistically was not constrained. In the other spectrum was added for comparison | NODE=S067SNC;LINKAGE=AR | | the neutral-current reaction threshold of | the first SNO res
reaction on deuter
f 2.2 MeV. The data
and May 28, 2001. | rium, $ u_{\ell}$ | $d \rightarrow 0$ | s solar-neutrino flux measured with $np\nu_\ell$, above the neutral-current o 306.4 live days with SNO between the description of the SNO Phase I | NODE=S067SNC;LINKAGE=AH | | $\phi_{ u_{\mu}+ u_{ au}}$ (8B) | | | | | NODE=S067SB8 | | | or active neutrino co | ompone | nt ($ u_{\mu}$ | $_{\iota}$ and $ u_{ au}$) in the 8 B solar-neutrino | NODE=S067SB8 | | | | | | | NODE=S067SB8 | | $VALUE (10^6 \text{ cm}^{-2} \text{s}^{-1})$ | DOCUMENT ID | | TECN | COMMENT | |--|----------------------|---------|-----------
---| | ullet $ullet$ We do not use the | following data for | average | es, fits, | limits, etc. • • • | | $3.26 \pm 0.25 ^{+0.40}_{-0.35}$ | ¹ AHARMIM | 05A | SNO | From $\phi_{NC},\phi_{CC},$ and $\phi_{ES};$ 8B shape not const. | | $3.09 \pm 0.22 ^{+0.30}_{-0.27}$ | ¹ AHARMIM | 05A | SNO | From ϕ_{NC} , ϕ_{CC} , and ϕ_{ES} ; 8B shape constrained | | $3.41 \pm 0.45 {+0.48 \atop -0.45}$ | ² AHMAD | 02 | SNO | From ϕ_{NC} , ϕ_{CC} , and ϕ_{ES} | | 3.69 ± 1.13 | ³ AHMAD | 01 | | Derived from SNO+SuperKam, water Cherenkov | $^1\mathrm{AHARMIM}$ 05A measurements were made with dissolved NaCl (0.195% by weight) in heavy water over the period between July 26, 2001 and August 28, 2003, corresponding to 391.4 live days, and update AHMED 04A. The *CC*, *ES*, and *NC* events were statistically separated. In one method, the ⁸B energy spectrum was not constrained. In the other method, the constraint of an undistorted ⁸B energy spectrum was added for comparison with AHMAD 02 results. 2 AHMAD 02 deduced the nonelectron-flavor active neutrino component $(\nu_\mu$ and $\nu_\tau)$ in the ^8B solar-neutrino flux, by combining the charged-current result, the $\nu\,e$ elastic-scattering result and the neutral-current result. The complete description of the SNO Phase I data set is given in AHARMIM 07. $^3\,\mathrm{AHMAD}$ 01 deduced the nonelectron-flavor active neutrino component $(\nu_\mu$ and $\nu_\tau)$ in the $^8{\rm B}$ solar-neutrino flux, by combining the SNO charged-current result (AHMAD 01) and the Super-Kamiokande $\nu\,e$ elastic-scattering result (FUKUDA 01). ### Total Flux of Active ⁸B Solar Neutrinos Total flux of active neutrinos (ν_{e} , ν_{μ} , and ν_{τ}). | | $VALUE (10^6 \text{ cm}^{-2} \text{s}^{-1})$ | DOCUMENT ID | | TECN | COMMENT | | | |---|--|----------------------|-----|------|--|--|--| | ullet $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$ | | | | | | | | | | $5.046 {}^{+ 0.159}_{- 0.152} {}^{+ 0.107}_{- 0.123}$ | $^{ m 1}$ AHARMIM | 10 | SNO | From ϕ_{NC} in Phase III | | | | | $5.54 \begin{array}{l} +0.33 \\ -0.31 \end{array} \begin{array}{l} +0.36 \\ -0.34 \end{array}$ | ² AHARMIM | 80 | SNO | ϕ_{NC} in Phase III | | | | | $4.94 \ \pm 0.21 \ ^{+ 0.38}_{- 0.34}$ | ³ AHARMIM | 05A | SNO | From ϕ_{NC} ; ⁸ B shape not const. | | | OCCUR=2 NODE=S067SB8;LINKAGE=AR NODE=S067SB8;LINKAGE=AH NODE=S067SB8;LINKAGE=MH NODE=S067SBT NODE=S067SBT NODE=S067SBT OCCUR=2 | $4.81 \ \pm 0.19 \ ^{+0.28}_{-0.27}$ | ³ AHARMIM | 05A SNC |) From ϕ_{NC} ; 8 B shape constrained | |--|----------------------|---------|---| | $5.09 \begin{array}{c} +0.44 & +0.46 \\ -0.43 & -0.43 \end{array}$ | ⁴ AHMAD | 02 SNC | Direct measurement from $\phi_{\it NC}$ | | 5.44 ± 0.99 | ⁵ AHMAD | 01 | Derived from SNO+SuperKam, | 1 AHARMIM 10 reports this result from a joint analysis of SNO Phase I+II data with the "effective electron kinetic energy" threshold of 3.5 MeV. This result is obtained with the assumption of unitarity, which relates the NC, CC, and ES rates. The data were fit with the free parameters directly describing the total $^8{\rm B}$ neutrino flux and the energy-dependent ν_e survival probability. 2 AHARMIM 08 reports the results from SNO Phase III measurement using an array of 3 He proportional counters to measure the rate of NC interactions in heavy water, over the period between November 27, 2004 and November 28, 2006, corresponding to 385.17 live days. A simultaneous fit was made for the number of NC events detected by the proportional counters and the numbers of NC, CC, and ES events detected by the PMTs, where the spectral distributions of the ES and CC events were not constrained to the $^8{\rm B}$ shape. ³ AHARMIM 05A measurements were made with dissolved NaCl (0.195% by weight) in heavy water over the period between July 26, 2001 and August 28, 2003, corresponding to 391.4 live days, and update AHMED 04A. The CC, ES, and NC events were statistically separated. In one method, the ⁸B energy spectrum was not constrained. In the other method, the constraint of an undistorted ⁸B energy spectrum was added for comparison with AHMAD 02 results. ⁸ AHMAD 02 determined the total flux of active ⁸B solar neutrinos by directly measuring the neutral-current reaction, $\nu_\ell d \to n p \nu_\ell$, which is equally sensitive to ν_e , ν_μ , and ν_τ . The complete description of the SNO Phase I data set is given in AHARMIM 07. 5 AHMAD 01 deduced the total flux of active 8 B solar neutrinos by combining the SNO charged-current result (AHMAD 01) and the Super-Kamiokande $\nu\,e$ elastic-scattering result (FUKUDA 01). NODE=S067SBT;LINKAGE=AA NODE=S067SBT;LINKAGE=HA NODE=S067SBT;LINKAGE=AR NODE=S067SBT;LINKAGE=AH NODE=S067SBT;LINKAGE=MH ### Day-Night Asymmetry (8B) $A = (\phi_{\mathsf{night}} - \phi_{\mathsf{day}}) / \phi_{\mathsf{average}}$ | VALUE | DOCUMENT ID | | TECN | COMMENT | |--|----------------------|-------------|-------------|---| | ullet $ullet$ We do not use the fo | llowing data for a | verage | es, fits, I | imits, etc. • • • | | $0.063\!\pm\!0.042\!\pm\!0.037$ | $^{ m 1}$ CRAVENS | 80 | SKAM | Based on ϕ_{ES} | | $0.021\!\pm\!0.020\!+\!0.012\\-0.013$ | ² HOSAKA | 06 | SKAM | Based on ϕ_{ES} | | $0.017\!\pm\!0.016\!+\!0.012\atop-0.013$ | ³ HOSAKA | 06 | SKAM | Fitted in the LMA region | | $-0.056\!\pm\!0.074\!\pm\!0.053$ | ⁴ AHARMIM | 05A | SNO | From salty SNO ϕ_{CC} | | $-0.037\pm0.063\pm0.032$ | ⁴ AHARMIM | 05A | SNO | From salty SNO ϕ_{CC} ; const. of no ϕ_{NC} asymmetry | | $0.14\ \pm0.063{+0.015\atop -0.014}$ | ⁵ AHMAD | 02в | SNO | Derived from SNO ϕ_{CC} | | $0.07 \pm 0.049 ^{+0.013}_{-0.012}$ | ⁶ AHMAD | 02 B | SNO | Const. of no $\phi_{\it NC}$ asymmetry | ¹ CRAVENS 08 reports the Super-Kamiokande-II results for 791 live days from December 2002 to October 2005. The photocathode coverage of the detector is 19% (reduced from 40% of that of Super-Kamiokande-I due to an accident in 2001). The analysis threshold for the day and night fluxes is 7.5 MeV. 2 HOSAKA 06 reports the final results for 1496 live days with Super-Kamiokande-I between May 31, 1996 and July 15, 2001, and replace FUKUDA 02 results. The analysis threshold is 5 MeV except for the first 280 live days (6.5 MeV). 3 This result with reduced statistical uncertainty is obtained by assuming two-neutrino oscillations within the LMA (large mixing angle) region and by fitting the time variation of the solar neutrino flux measured via $\nu_{\rm e}$ elastic scattering to the variations expected from neutrino oscillations. For details, see SMY 04. There is an additional small systematic error of ± 0.0004 coming from uncertainty of oscillation parameters. 4 AHARMIM 05A measurements were made with dissolved NaCl (0.195% by weight) in heavy water over the period between July 26, 2001 and August 28, 2003, with 176.5 days of the live time recorded during the day and 214.9 days during the night. This result is obtained with the spectral distribution of the CC events not constrained to the 8 B shape. ⁵ AHMAD 02B results are based on the charged-current interactions recorded between November 2, 1999 and May 28, 2001, with the day and night live times of 128.5 and 177.9 days, respectively. The complete description of the SNO Phase I data set is given in AHARMIM 07. 6 AHMAD 02B results are derived from the charged-current interactions, neutral-current interactions, and $\nu\,e$ elastic scattering, with the total flux of active neutrinos constrained to have no asymmetry. The data were recorded between November 2, 1999 and May 28, 2001, with the day and night live times of 128.5 and 177.9 days, respectively. The complete description of the SNO Phase I data set is given in AHARMIM 07. NODE=S067SDN NODE=S067SDN NODE=S067SDN OCCUR=2 OCCUR=2 OCCUR=2 NODE=S067SDN;LINKAGE=CR NODE=S067SDN;LINKAGE=HO NODE=S067SDN;LINKAGE=HS NODE=S067SDN;LINKAGE=AR NODE=S067SDN;LINKAGE=AH NODE=S067SDN;LINKAGE=AI | φES | (⁷ Be) | |------|--------------------| | Y E3 | \ | ${}^{7}\mathrm{Be}$ solar-neutrino flux measured via ν_{e} elastic scattering. This process is sensitive to all active neutrino flavors, but with reduced sensitivity to $\nu_{\mu},\,\nu_{ au}$ due to the crosssection difference, $\sigma(\nu_{\mu,\tau}\,e)\sim$ 0.2 $\sigma(\nu_e\,e)$. If the 7 Be solar-neutrino flux involves nonelectron flavor active neutrinos, their contribution to the flux is \sim 0.2 times that of ν_{e} . NODE=S067PBE NODE=S067PBE $VALUE (10^9 \text{ cm}^{-2} \text{ s}^{-1})$ DOCUMENT ID TECN COMMENT NODE=S067PBE ¹ BELLINI • • • We do not use the following data for averages, fits, limits, etc. • • • 11A BORX average flux NODE=S067PBE;LINKAGE=EL 1 BELLINI 11A reports the 7 Be solar neutrino flux measured via u-e elastic scattering. The data correspond to 740.7 live days between May 16, 2007 and May 8, 2010, and also correspond to 153.6 ton year fiducial exposure. BELLINI 11A measured the 862 keV 7 Be solar neutrino flux, which is an 89.6% branch of the 7 Be solar neutrino flux, to be $(2.78 \pm 0.13) \times 10^9 \text{ cm}^{-2} \text{ s}^{-1}$. Supercedes ARPESELLA 08A. ### ϕ_{ES} (pep) pep solar-neutrino flux measured via ν_e elastic scattering. This process is sensitive to all active neutrino flavors, but with reduced sensitivity to ν_{μ} , $\nu_{ au}$ due to the cross
section difference, $\sigma(\nu_{\mu,\tau}~e)\sim~0.2~\sigma(\nu_{e}\,e)$. If the pep solar-neutrino flux involves non-electron flavor active neutrinos, their contribution to the flux is $\sim~0.2$ times that of ν_e . NODE=S067PEP NODE=S067PEP $VALUE (10^8 \text{ cm}^{-2} \text{s}^{-1})$ DOCUMENT ID TECN COMMENT NODE=S067PEP 1.0 ± 0.2 \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet ¹ BELLINI 12A BORX average flux 1 BELLINI 12A reports 1.44 MeV $p\,e\,p$ solar-neutrino flux measured via ν_e elastic scattering. The data were collected between January 13, 2008 and May 9, 2010, corresponding to 20,4009 ton·day fiducial exposure. The listed flux value is calculated from the observed rate of pep solar neutrino interactions in Borexino (3.1 \pm 0.6 \pm 0.3 counts/(day-100 ton)) and the corresponding rate expected for no neutrino flavor oscillations (4.47 $\pm\,0.05$ counts/(day·100 ton)), using the SSM prediction for the pep solar neutrino flux of $(1.441 \pm 0.012) \times 10^{8} \text{ cm}^{-2} \text{s}^{-1}$ NODE=S067PEP;LINKAGE=BE #### ϕ_{ES} (CNO) CNO solar-neutrino flux measured via ν_e elastic scattering. This process is sensitive to all active neutrino flavors, but with reduced sensitivity to ν_{μ} , $\nu_{ au}$ due to the cross section difference, $\sigma(\nu_{\mu,\tau}\,e)\sim 0.2\,\sigma(\nu_e\,e)$. If the CNO solar-neutrino flux involves non-electron flavor active neutrinos, their contribution to the flux is ~ 0.2 times that of ν_e . NODE=S067CNO NODE=S067CNO $VALUE (10^8 \text{ cm}^{-2} \text{s}^{-1}) CL\%$ DOCUMENT ID TECN COMMENT NODE=S067CNO ¹ BELLINI • • • We do not use the following data for averages, fits, limits, etc. • • 12A BORX MSW-LMA solution assumed 1 BELLINI 12A reports an upper limit of the CNO solar neutrino flux measured via ι elastic scattering. The data were collected between January 13, 2008 and May 9, 2010, corresponding to 20,409 ton-day fiducial exposure. NODE=S067CNO;LINKAGE=BE #### $\phi_{CC}(pp)$ pp solar-neutrino flux measured with charged-current reaction which is sensitive exclusively to ν_e $VALUE (10^{10} \text{ cm}^{-2} \text{ s}^{-1})$ DOCUMENT ID TECN COMMENT \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet NODE=S067PPF NODE=S067PPF NODE=S067PPF 3.38 ± 0.47 ¹ ABDURASHI... 09 FIT Fit existing solar-u data ¹ ABDURASHITOV 09 reports the pp solar-neutrino flux derived from the Ga solar neutrino capture rate by subtracting contributions from ⁸B, ⁷Be, pep and CNO solar neutrino fluxes determined by other solar neutrino experiments as well as neutrino oscillation parameters determined from available world neutrino oscillation data. NODE=S067PPF;LINKAGE=AB ### ϕ_{ES} (hep) hep solar-neutrino flux measured via $\nu\,e$ elastic scattering. This process is sensitive to all active neutrino flavors, but with reduced sensitivity to ν_{μ} , $\nu_{ au}$ due to the crosssection difference, $\sigma(\nu_{\mu,\tau} \, {\rm e}) \sim 0.16 \sigma(\nu_{\rm e} \, {\rm e})$. If the hep solar-neutrino flux involves nonelectron flavor active neutrinos, their contribution to the flux is \sim 0.16 times of NODE=S067HEP NODE=S067HEP $VALUE (10^3 \text{ cm}^{-2}\text{s}^{-1})$ <u>CL%</u> DOCUMENT ID TECN • • • We do not use the following data for averages, fits, limits, etc. • • NODE=S067HEP ¹ HOSAKA 06 SKAM NODE=S067HEP;LINKAGE=HO $^{ m 1}$ HOSAKA 06 result is obtained from the recoil electron energy window of 18–21 MeV, and updates FUKUDA 01 result. # $\phi_{\overline{ u}_e}$ (8B) Searches are made for electron antineutrino flux from the Sun. Flux limits listed here are derived relative to the BS05(OP) Standard Solar Model $^8\mathrm{B}$ solar neutrino flux $(5.69 \times 10^6~{\rm cm^{-2}\,s^{-1}})$, with an assumption that solar $\overline{\nu}_e$ s follow an unoscillated $^8{\rm B}$ neutrino spectrum. | NODE=S067EB8 | | |--------------|--| | NODE=S067EB8 | | NODE=S067EB8 | VALUE (%) | CL% | DOCUMENT ID | | TECN | COMMENT | |-------------------------|-----------|---------------------|----------|-----------|---| | • • • We do not use the | following | data for averages | s, fits, | limits, e | etc. • • • | | < 0.013 | 90 | BELLINI | 11 | BORX | $E_{\overline{ u}_{e}} > 1.8MeV$ | | <1.9 | 90 | ¹ BALATA | 06 | CNTR | $1.8 < E_{\overline{ u}_e} < 20.0 \; MeV$ | | < 0.72 | 90 | AHARMIM | | | $4.0 < E_{\overline{\nu}_{e}} < 14.8 \; MeV$ | | < 0.022 | 90 | EGUCHI | 04 | KLND | $8.3 < E_{\overline{\nu}_e} < 14.8 \text{ MeV}$ | | < 0.7 | 90 | GANDO | 03 | SKAM | $8.0 < E_{\overline{\nu}_e} < 20.0 \text{ MeV}$ | | <1.7 | 90 | AGLIETTA | 96 | | 7 | $^{^1\, \}rm BALATA$ 06 obtained this result from the search for $\overline{\nu}_e$ interactions with Counting Test Facility (the prototype of the Borexino detector). NODE=S067EB8;LINKAGE=BA #### (B) Three-neutrino mixing parameters ## A REVIEW GOES HERE - Check our WWW List of Reviews NODE=S067OSC NODE=S067260 | sin ² (2θ ₁₂)
VALUE | DOCUMENT II |) | <u>TECN</u> | COMMENT | NODE=S067T12
NODE=S067T12 | |--|---------------------------|-------------|-------------|--|------------------------------| | $0.857 ^{f +0.023}_{f -0.025}$ | ¹ GANDO | 11 | FIT | $KamLAND + solar \colon 3\nu$ | | | | se the following data for | averag | es, fits, | limits, etc. • • • | | | 0.85 ±0.02 | ² ABE | 11 | FIT | KamLAND $+$ global solar: $2 u$ | | | $0.84 \begin{array}{l} +0.03 \\ -0.02 \end{array}$ | ³ ABE | 11 | FIT | global solar: 2ν | OCCUR=2 | | $0.85 \begin{array}{l} +0.04 \\ -0.03 \end{array}$ | ⁴ ABE | 11 | FIT | KamLAND $+$ global solar: $3 u$ | OCCUR=3 | | $0.85 \begin{array}{l} +0.04 \\ -0.05 \end{array}$ | ⁵ ABE | 11 | FIT | global solar: 3ν | OCCUR=4 | | $0.861^{+0.022}_{-0.018}$ | ⁶ BELLINI | 11A | FIT | $KamLAND + global \; solar : \; \; 2\nu$ | | | $0.869^{+0.024}_{-0.022}$ | ⁷ BELLINI | 11A | FIT | global solar: 2ν | OCCUR=2 | | $0.846^{igoplus 0.064}_{igoplus 0.073}$ | ⁸ GANDO | 11 | FIT | KamLAND: 3ν | OCCUR=2 | | $0.861^{+0.026}_{-0.022}$ | 9,10 AHARMIM | 10 | FIT | $KamLAND + global \; solar : \; \; 2\nu$ | | | $0.861^{+0.024}_{-0.031}$ | 9,11 AHARMIM | 10 | FIT | global solar: 2ν | OCCUR=2 | | $0.869^{igoplus 0.026}_{igoplus 0.024}$ | 9,12 AHARMIM | 10 | FIT | KamLAND $+$ global solar: $3 u$ | OCCUR=3 | | $0.869^{igoplus 0.031}_{igoplus 0.037}$ | 9,13 AHARMIM | 10 | FIT | global solar: 3ν | OCCUR=4 | | 0.92 ± 0.05 | 14 ABE | 08A | FIT | KamLAND | | | 0.87 ± 0.04 | ¹⁵ ABE | | FIT | KamLAND + global fit | OCCUR=2 | | 0.87 ± 0.03 | ¹⁶ AHARMIM | 80 | FIT | $KamLAND + global \; solar$ | | | $0.85 \begin{array}{l} +0.04 \\ -0.06 \end{array}$ | ¹⁷ HOSAKA | 06 | FIT | $KamLAND + global \; solar$ | | | $0.85 \begin{array}{l} +0.06 \\ -0.05 \end{array}$ | ¹⁸ HOSAKA | 06 | FIT | SKAM + SNO + KamLAND | OCCUR=2 | | $0.86 \begin{array}{l} +0.05 \\ -0.07 \end{array}$ | ¹⁹ HOSAKA | 06 | FIT | SKAM+SNO | OCCUR=3 | | $0.86 \begin{array}{l} +0.03 \\ -0.04 \end{array}$ | ²⁰ AHARMIM | 05A | FIT | $KamLAND + global \; solar$ | | | 0.75-0.95 | ²¹ AHARMIM | 05A | FIT | global solar | OCCUR=2 | | 0.82 ± 0.05 | ²² ARAKI | 05 | FIT | $KamLAND + global \; solar$ | OCCUR=2 | | 0.82 ± 0.04 | ²³ AHMED | 04A | FIT | $KamLAND + global \; solar$ | | | 0.71-0.93 | ²⁴ AHMED | 04A | FIT | global solar | OCCUR=2 | | $0.85 \begin{array}{l} +0.05 \\ -0.07 \end{array}$ | ²⁵ SMY | 04 | FIT | $KamLAND + global \; solar$ | | | $0.83 \begin{array}{l} +0.06 \\ -0.08 \end{array}$ | ²⁶ SMY | 04 | FIT | global solar | OCCUR=2 | | $0.87 \begin{array}{l} +0.07 \\ -0.08 \end{array}$ | ²⁷ SMY | 04 | FIT | SKAM + SNO | OCCUR=3 | | 0.62-0.88 | ²⁸ AHMAD | 02 B | FIT | global solar | | | 0.62-0.95 | ²⁹ FUKUDA | 02 | FIT | global solar | | | | | | | | | | | 6/25/2013 16:37 Page 3 | |--|-------------------------| | 1 GANDO 11 obtain this result with three-neutrino fit using the KamLAND $+$ solar data. Supersedes ABE 08A. | NODE=S067T12;LINKAGE=GA | | ² ABE 11 obtained this result by a two-neutrino oscillation analysis using solar neutrino data including Super-Kamiokande, SNO, Borexino (ARPESELLA 08A), Homestake, GALLEX/GNO, SAGE, and KamLAND data. CPT invariance is assumed. | NODE=S067T12;LINKAGE=B1 | | ³ ABE 11 obtained this result by a two-neutrino oscillation analysis using solar neutrino data including Super-Kamiokande, SNO, Borexino (ARPESELLA 08A), Homestake, GALLEX/GNO, and SAGE data. | NODE=S067T12;LINKAGE=B2 | | ⁴ ABE 11 obtained this result by a three-neutrino oscillation analysis with the value of Δm_{32}^2 fixed to $2.4 \times 10^{-3} \text{ eV}^2$, using solar neutrino data including Super-Kamiokande, SNO, Borexino (ARPESELLA 08A), Homestake, GALLEX/GNO, SAGE, and KamLAND data. The normal neutrino mass hierarchy and CPT invariance are assumed. | NODE=S067T12;LINKAGE=B3 | | $^5 \text{ABE 11}$ obtained this result by a three-neutrino oscillation analysis with the value of Δm_{32}^2 fixed to $2.4 \times 10^{-3} \text{ eV}^2$, using solar neutrino data including Super-Kamiokande, SNO, Borexino (ARPESELLA 08A), Homestake, and GALLEX/GNO data. The normal neutrino mass hierarchy is assumed. | NODE=S067T12;LINKAGE=B4 | | ⁶ BELLINI 11A obtained this result by a two-neutrino oscillation analysis using KamLAND, Homestake, SAGE, Gallex, GNO, Kamiokande, Super-Kamiokande, SNO, and
Borexino (BELLINI 11A) data and the SSM flux prediction in SERENELLI 11 (Astrophysical Journal 743 24 (2011)) with the exception that the ⁸ B flux was left free. CPT invariance is | NODE=S067T12;LINKAGE=SR | | assumed. ⁷ BELLINI 11A obtained this result by a two-neutrino oscillation analysis using Homestake, SAGE, Gallex, GNO, Kamiokande, Super-Kamiokande, SNO, and Borexino (BELLINI 11A) data and the SSM flux prediction in SERENELLI 11 (Astrophysical Journal 743 24 (2011)) with the exception that the ⁸ B flux was left free. | NODE=S067T12;LINKAGE=ER | | ⁸ GANDO 11 obtain this result with three-neutrino fit using the KamLAND data only. Supersedes ABE 08A. | NODE=S067T12;LINKAGE=GN | | ⁹ AHARMIM 10 global solar neutrino data include SNO's low-energy-threshold analysis survival probability day/night curves, SNO Phase III integral rates (AHARMIM 08), CI (CLEVELAND 98), SAGE (ABDURASHITOV 09), Gallex/GNO (HAMPEL 99, ALT-MANN 05), Borexino (ARPESELLA 08A), SK-I zenith (HOSAKA 06), and SK-II day/night spectra (CRAVENS 08). | NODE=S067T12;LINKAGE=A0 | | ¹⁰ AHARMIM 10 obtained this result by a two-neutrino oscillation analysis using global solar neutrino data and KamLAND data (ABE 08A). CPT invariance is assumed. | NODE=S067T12;LINKAGE=A1 | | 11 AHARMIM 10 obtained this result by a two-neutrino oscillation analysis using global
solar neutrino data. | NODE=S067T12;LINKAGE=A2 | | 12 AHARMIM 10 obtained this result by a three-neutrino oscillation analysis with the value of Δm_{31}^2 fixed to 2.3×10^{-3} eV ² , using global solar neutrino data and KamLAND data (ABE 08A). <i>CPT</i> invariance is assumed. | NODE=S067T12;LINKAGE=A3 | | ¹³ AHARMIM 10 obtained this result by a three-neutrino oscillation analysis with the value of Δm_{31}^2 fixed to 2.3×10^{-3} eV ² , using global solar neutrino data. | NODE=S067T12;LINKAGE=A4 | | 14 ABE 08A obtained this result by a rate $+$ shape $+$ time combined geoneutrino and reactor two-neutrino fit for Δm_{21}^2 and $\tan^2\theta_{12}$, using KamLAND data only. | NODE=S067T12;LINKAGE=AB | | 15 ABE 08A obtained this result by means of a two-neutrino fit using KamLAND, Homestake, SAGE, GALLEX, GNO, SK (zenith angle and E-spectrum), the SNO χ^2 -map, and solar flux data. <i>CPT</i> invariance is assumed. | NODE=S067T12;LINKAGE=BE | | 16 The result given by AHARMIM 08 is $\theta=(34.4^{+1.3}_{-1.2})^{\circ}$. This result is obtained by a two-neutrino oscillation analysis using solar neutrino data including those of Borexino (ARPESELLA 08A) and Super-Kamiokande-I (HOSAKA 06), and KamLAND data (ABE 08A). CPT invariance is assumed. | NODE=S067T12;LINKAGE=AH | | 17 HOSAKA 06 obtained this result by a two-neutrino oscillation analysis using SK ν_e data, CC data from other solar neutrino experiments, and KamLAND data (ARAKI 05). <i>CPT</i> invariance is assumed. | NODE=S067T12;LINKAGE=HO | | ¹⁸ HOSAKA 06 obtained this result by a two-neutrino oscillation analysis using the data from
Super-Kamiokande, SNO (AHMAD 02 and AHMAD 02B), and KamLAND (ARAKI 05)
experiments. CPT invariance is assumed. | NODE=S067T12;LINKAGE=HS | | ¹⁹ HOSAKA 06 obtained this result by a two-neutrino oscillation analysis using the Super-Kamiokande and SNO (AHMAD 02 and AHMAD 02B) solar neutrino data. | NODE=S067T12;LINKAGE=HK | | 20 The result given by AHARMIM 05A is $\theta=(33.9\pm1.6)^\circ.$ This result is obtained by a two-neutrino oscillation analysis using SNO pure deuteron and salt phase data, SK ν_e data, Cl and Ga CC data, and KamLAND data (ARAKI 05). <i>CPT</i> invariance is assumed. AHARMIM 05A also quotes $\theta=(33.9^{+2.4}_{-2.2})^\circ$ as the error enveloping the 68% CL two-dimensional region. This translates into $\sin^2 2 \theta=0.86^{+0.05}_{-0.06}.$ | NODE=S067T12;LINKAGE=AI | | 21 AHARMIM 05A obtained this result by a two-neutrino oscillation analysis using the data from all solar neutrino experiments. The listed range of the parameter envelops the 95% | NODE=S067T12;LINKAGE=HA | ²¹ AHARMIM 05A obtained this result by a two-neutrino oscillation analysis using the data from all solar neutrino experiments. The listed range of the parameter envelops the 95% CL two-dimensional region shown in figure 35a of AHARMIM 05A. AHARMIM 05A also quotes $\tan^2\theta = 0.45^{+0.09}_{-0.08}$ as the error enveloping the 68% CL two-dimensional region. This translates into $\sin^2\theta = 0.86^{+0.05}_{-0.07}$. ARAKI 05 obtained this result by a two-neutrino oscillation analysis using KamLAND and solar neutrino data. *CPT* invariance is assumed. The 1σ error shown here is translated from the number provided by the KamLAND collaboration, $\tan^2\theta = 0.40 + 0.07$. The NODE=S067T12;LINKAGE=AK corresponding number quoted in ARAKI 05 is $\tan^2 \theta = 0.40^{+0.10}_{-0.07}$ ($\sin^2 2 \theta = 0.82 \pm 0.00$ 0.07), which envelops the 68% CL two-dimensional region. ²³ The result given by AHMED 04A is $\theta = (32.5 + 1.7)^{\circ}$. This result is obtained by a two-neutrino oscillation analysis using solar neutrino and KamLAND data (EGUCHI 03). *CPT* invariance is assumed. AHMED 04A also quotes $\theta = (32.5 {+} 2.4 \atop -2.3)^\circ$ as the error enveloping the 68% CL two-dimensional region. This translates into $\sin^2\!2~\theta=0.82\pm0.06$. 24 AHMED 04A obtained this result by a two-neutrino oscillation analysis using the data from all solar neutrino experiments. The listed range of the parameter envelops the 95% CL two-dimensional region shown in Fig. 5(a) of AHMED 04A. The best-fit point is $\Delta(m^2) = 6.5 \times 10^{-5} \text{ eV}^2$, $\tan^2 \theta = 0.40 \text{ (sin}^2 2 \theta = 0.82)$. The result given by SMY 04 is $\tan^2\theta=0.44\pm0.08$. This result is obtained by a two-neutrino oscillation analysis using solar neutrino and KamLAND data (IANNI 03). *CPT* invariance is assumed. 26 SMY 04 obtained this result by a two-neutrino oscillation analysis using the data from all solar neutrino experiments. The 1σ errors are read from Fig. 6(a) of SMY 04. $^{27} \, \text{SMY}$ 04 obtained this result by a two-neutrino oscillation analysis using the Super-Kamiokande and SNO (AHMAD 02 and AHMAD 02B) solar neutrino data. The 1σ errors are read from Fig. 6(a) of SMY 04. ²⁸ AHMAD 02B obtained this result by a two-neutrino oscillation analysis using the data from all solar neutrino experiments. The listed range of the parameter envelops the 95%CL two-dimensional region shown in Fig. 4(b) of AHMAD 02B. The best fit point is $\Delta(m^2) = 5.0 \times 10^{-5} \text{ eV}^2 \text{ and } \tan\theta = 0.34 \text{ (sin}^2 2 \theta = 0.76).$ $^{29}\,\text{FUKUDA}$ 02 obtained this result by a two-neutrino oscillation analysis using the data from all solar neutrino experiments. The listed range of the parameter envelops the 95%CL two-dimensional region shown in Fig. 4 of FUKUDA 02. The best fit point is $\Delta(m^2)$ $=6.9 \times 10^{-5} \text{ eV}^2 \text{ and } \tan^2 \theta = 0.38 \text{ (sin}^2 \theta = 0.80).$ NODE=S067T12;LINKAGE=AD NODE=S067T12;LINKAGE=AE NODE=S067T12;LINKAGE=SE NODE=S067T12;LINKAGE=SF NODE=S067T12;LINKAGE=SG NODE=S067T12;LINKAGE=HM NODE=S067T12;LINKAGE=FU NODE=S067DM3 # Δm_{21}^2 | $VALUE (10^{-5} \text{ eV}^2)$ | DOCUMENT ID | | TECN | COMMENT | NODE=S067DM3 | |--|------------------------|-------------|----------|--|--------------------| | $7.50^{f +0.19}_{f =0.20}$ | ¹ GANDO | 11 | FIT | $KamLAND + solar: \ 3\nu$ | | | | ise the following data | for a | verages, | fits, limits, etc. \bullet \bullet | | | 7.6 ±0.2 | ² ABE | 11 | FIT | $KamLAND + global \; solar : \; 2\nu$ | | | $6.2 \begin{array}{c} +1.1 \\ -1.9 \end{array}$ | ³ ABE | 11 | FIT | global solar: $2 u$ | OCCUR=2 | | $7.7\ \pm0.3$ | ⁴ ABE | 11 | FIT | KamLAND $+$ global solar: $3 u$ | OCCUR=3 | | $6.0 \begin{array}{c} +2.2 \\ -2.5 \end{array}$ | ⁵ ABE | 11 | FIT | global solar: 3ν | OCCUR=4 | | $7.50^{\begin{subarray}{c} +0.16 \\ -0.24 \end{subarray}}$ | ⁶ BELLINI | 11A | FIT | $KamLAND + global \; solar \colon \; 2\nu$ | | | $5.2 \begin{array}{c} +1.5 \\ -0.9 \end{array}$ | ⁷ BELLINI | 11A | FIT | global solar: 2ν | OCCUR=2 | | $7.49 \!\pm\! 0.20$ | ⁸ GANDO | 11 | FIT | KamLAND: 3ν | OCCUR=2 | | $7.59 ^{m{+0.20}}_{-0.21}$ | 9,10 AHARMIM | 10 | FIT | $KamLAND + global \; solar: \; \; 2\nu$ | | | $5.89^{+2.13}_{-2.16}$ | 9,11 AHARMIM | 10 | FIT | global solar: 2ν | OCCUR=2 | | 7.59 ± 0.21 | 9,12 AHARMIM | 10 | FIT | KamLAND $+$ global solar: $3 u$ | OCCUR=3 | | $6.31^{+2.49}_{-2.58}$ | 9,13 AHARMIM | 10 | FIT | global solar: $3 u$ | OCCUR=4 | | $7.58^{\color{red}+0.14}_{-0.13} \pm 0.15$ | ¹⁴ ABE | 08A | FIT | KamLAND | | | 7.59 ± 0.21 | ¹⁵ ABE | 08A | FIT | $KamLAND + global \; solar$ | OCCUR=2 | | $7.59 ^{m{+0.19}}_{-0.21}$ | ¹⁶ AHARMIM | 80 | FIT | $KamLAND + global \; solar$ | | | 8.0 ± 0.3 | 17 HOSAKA | 06 | FIT | $KamLAND + global \; solar$ | | | 8.0 ± 0.3 | ¹⁸ HOSAKA | 06 | FIT | SKAM+SNO+KamLAND | OCCUR=2
OCCUR=3 | | $6.3 \begin{array}{c} +3.7 \\ -1.5 \end{array}$ | ¹⁹ HOSAKA | 06 | FIT | SKAM+SNO | | | 5–12 | ²⁰ HOSAKA | 06 | FIT | SKAM day/night in the LMA region | OCCUR=4 | | $8.0 \begin{array}{l} +0.4 \\ -0.3 \end{array}$ | ²¹ AHARMIM | | FIT | $KamLAND + global \; solar \; LMA$ | | | 3.3–14.4 | ²² AHARMIM | 05A | FIT | global solar | OCCUR=2 | | $7.9 \begin{array}{c} +0.4 \\ -0.3 \end{array}$ | ²³ ARAKI | 05 | FIT | $KamLAND + global \; solar$ | OCCUR=3 | | $7.1 \begin{array}{c} +1.0 \\ -0.3 \end{array}$ | ²⁴ AHMED | 04A | FIT | $KamLAND + global \; solar$ | | | 3.2-13.7 | ²⁵ AHMED | 04A | FIT | global solar | OCCUR=2 | | $7.1 \begin{array}{c} +0.6 \\ -0.5 \end{array}$ | ²⁶ SMY | 04 | FIT | $KamLAND + global \; solar$ | | | $6.0 \begin{array}{c} +1.7 \\ -1.6 \end{array}$ | ²⁷ SMY | 04 | FIT | global solar | OCCUR=2 | | $6.0 \begin{array}{l} +2.5 \\ -1.6 \end{array}$
 ²⁸ SMY | 04 | FIT | SKAM + SNO | OCCUR=3 | | 2.8-12.0 | ²⁹ AHMAD | 02 B | FIT | global solar | | | 3.2–19.1 | ³⁰ FUKUDA | 02 | FIT | global solar | | | | 6/25/2013 16:37 Page 1 | |---|-------------------------| | $^{1}\mathrm{GANDO}\ 11$ obtain this result with three-neutrino fit using the KamLAND $+$ solar data. Supersedes ABE 08A. | NODE=S067DM3;LINKAGE=GA | | ² ABE 11 obtained this result by a two-neutrino oscillation analysis using solar neutrino data including Super-Kamiokande, SNO, Borexino (ARPESELLA 08A), Homestake, GALLEX/GNO, SAGE, and KamLAND data. CPT invariance is assumed. | NODE=S067DM3;LINKAGE=B1 | | ³ ABE 11 obtained this result by a two-neutrino oscillation analysis using solar neutrino data including Super-Kamiokande, SNO, Borexino (ARPESELLA 08A), Homestake, GALLEX/GNO, and SAGE data. | NODE=S067DM3;LINKAGE=B2 | | 4 ABE 11 obtained this result by a three-neutrino oscillation analysis with the value of Δm_{32}^2 fixed to 2.4×10^{-3} eV 2 , using solar neutrino data including Super-Kamiokande, SNO, Borexino (ARPESELLA 08A), Homestake, GALLEX/GNO, SAGE, and KamLAND data. The normal neutrino mass hierarchy and CPT invariance are assumed. | NODE=S067DM3;LINKAGE=B3 | | 5 ABE 11 obtained this result by a three-neutrino oscillation analysis with the value of Δm_{32}^2 fixed to $2.4\times 10^{-3}~\rm eV^2$, using solar neutrino data including Super-Kamiokande, SNO, Borexino (ARPESELLA 08A), Homestake, and GALLEX/GNO data. The normal neutrino mass hierarchy is assumed. | NODE=S067DM3;LINKAGE=B4 | | ⁶ BELLINI 11A obtained this result by a two-neutrino oscillation analysis using KamLAND, Homestake, SAGE, Gallex, GNO, Kamiokande, Super-Kamiokande, SNO, and Borexino (BELLINI 11A) data and the SSM flux prediction in SERENELLI 11 (Astrophysical Journal 743 24 (2011)) with the exception that the ⁸ B flux was left free. CPT invariance is assumed. | NODE=S067DM3;LINKAGE=SR | | ⁷ BELLINI 11A obtained this result by a two-neutrino oscillation analysis using Homestake, SAGE, Gallex, GNO, Kamiokande, Super-Kamiokande, SNO, and Borexino (BELLINI 11A) data and the SSM flux prediction in SERENELLI 11 (Astrophysical Journal 743 24 (2011)) with the exception that the ⁸ B flux was left free. | NODE=S067DM3;LINKAGE=ER | | ⁸ GANDO 11 obtain this result with three-neutrino fit using the KamLAND data only. Supersedes ABE 08A. | NODE=S067DM3;LINKAGE=GN | | ⁹ AHARMIM 10 global solar neutrino data include SNO's low-energy-threshold analysis survival probability day/night curves, SNO Phase III integral rates (AHARMIM 08), CI (CLEVELAND 98), SAGE (ABDURASHITOV 09), Gallex/GNO (HAMPEL 99, ALT-MANN 05), Borexino (ARPESELLA 08A), SK-I zenith (HOSAKA 06), and SK-II day/night spectra (CRAVENS 08). | NODE=S067DM3;LINKAGE=A0 | | 10 AHARMIM 10 obtained this result by a two-neutrino oscillation analysis using global
solar neutrino data and KamLAND data (ABE 08A). CPT invariance is assumed. | NODE=S067DM3;LINKAGE=A1 | | 11 AHARMIM 10 obtained this result by a two-neutrino oscillation analysis using global | NODE=S067DM3;LINKAGE=A2 | | solar neutrino data.
¹² AHARMIM 10 obtained this result by a three-neutrino oscillation analysis with the value of Δm_{31}^2 fixed to $2.3 \times 10^{-3} \text{ eV}^2$, using global solar neutrino data and KamLAND data (ABE 08A). <i>CPT</i> invariance is assumed. | NODE=S067DM3;LINKAGE=A3 | | ¹³ AHARMIM 10 obtained this result by a three-neutrino oscillation analysis with the value of Δm_{31}^2 fixed to 2.3×10^{-3} eV ² , using global solar neutrino data. | NODE=S067DM3;LINKAGE=A4 | | 14 ABE 08A obtained this result by a rate $+$ shape $+$ time combined geoneutrino and reactor two-neutrino fit for Δm_{21}^2 and $\tan^2\theta_{12}$, using KamLAND data only. | NODE=S067DM3;LINKAGE=AB | | 15 ABE 08A obtained this result by means of a two-neutrino fit using KamLAND, Homestake, SAGE, GALLEX, GNO, SK (zenith angle and E-spectrum), the SNO χ^2 -map, and solar flux data. CPT invariance is assumed. | NODE=S067DM3;LINKAGE=BE | | 16 AHARMIM 08 obtained this result by a two-neutrino oscillation analysis using all solar neutrino data including those of Borexino (ARPESELLA 08A) and Super-Kamiokande-I (HOSAKA 06), and KamLAND data (ABE 08A). CPT invariance is assumed. | NODE=S067DM3;LINKAGE=AH | | 17 HOSAKA 06 obtained this result by a two-neutrino oscillation analysis using solar neutrino
and KamLAND data (ARAKI 05). CPT invariance is assumed. | NODE=S067DM3;LINKAGE=HO | | ¹⁸ HOSAKA 06 obtained this result by a two-neutrino oscillation analysis using the data from
Super-Kamiokande, SNO (AHMAD 02 and AHMAD 02B), and KamLAND (ARAKI 05)
experiments. CPT invariance is assumed. | NODE=S067DM3;LINKAGE=HS | | 19 HOSAKA 06 obtained this result by a two-neutrino oscillation analysis using the Super-
Kamiokande and SNO (AHMAD 02 and AHMAD 02B) solar neutrino data. | NODE=S067DM3;LINKAGE=HK | | 20 HOSAKA 06 obtained this result from the consistency between the observed and expected day-night flux asymmetry amplitude. The listed 68% CL range is derived from the 1σ boundary of the amplitude fit to the data. Oscillation parameters are constrained to be in the LMA region. The mixing angle is fixed at $\tan^2\theta=0.44$ because the fit depends | NODE=S067DM3;LINKAGE=OS | | only very weekly on it. $^{21} \text{AHARMIM 05A obtained this result by a two-neutrino oscillation analysis using solar neutrino and KamLAND data (ARAKI 05). CPT invariance is assumed. AHARMIM 05A also quotes $\Delta(m^2) = (8.0^{+0.6}_{-0.4}) \times 10^{-5}$ eV2 as the error enveloping the 68% CL two-dimensional particles.$ | NODE=S067DM3;LINKAGE=AI | dimensional region. 22 AHARMIM 05A obtained this result by a two-neutrino oscillation analysis using the data from all solar neutrino experiments. The listed range of the parameter envelops the 95% CL two-dimensional region shown in figure 35a of AHARMIM 05A. AHARMIM 05A also quotes $\Delta(m^2) = (6.5 + 4.4) \times 10^{-5} \text{ eV}^2$ as the error enveloping the 68% CL two-dimensional region. 23 ARAKI 05 obtained this result by a two-neutrino oscillation analysis using KamLAND and solar neutrino data. CPT invariance is assumed. The 1σ error shown here is provided NODE=S067DM3;LINKAGE=AK NODE=S067DM3;LINKAGE=HA by the KamLAND collaboration. The error quoted in ARAKI 05, $\Delta(m^2)=(7.9^{+0.6}_{-0.5})\times 10^{-5}$, envelops the 68% CL two-dimensional region. 24 AHMED 04A obtained this result by a two-neutrino oscillation analysis using solar neutrino and KamLAND data (EGUCHI 03). $\it CPT$ invariance is assumed. AHMED 04A also quotes $\Delta(m^2)=(7.1^{+}1.2_{-}0.6_{-})\times 10^{-5}~\rm eV^2$ as the error enveloping the 68% CL two-dimensional region. 25 AHMED 04A obtained this result by a two-neutrino oscillation analysis using the data from all solar neutrino experiments. The listed range of the parameter envelops the 95% CL two-dimensional region shown in Fig. 5(a) of AHMED 04A. The best-fit point is $\Delta(m^2)=6.5\times 10^{-5}~\text{eV}^2,~\tan^2\theta=0.40~(\sin^2\!2~\theta=0.82).$ $26\,\mathrm{SMY}$ 04 obtained this result by a two-neutrino oscillation analysis using solar neutrino and KamLAND data (IANNI 03). *CPT* invariance is assumed. $^{27}\,\text{SMY}$ 04 obtained this result by a two-neutrino oscillation analysis using the data from all solar neutrino experiments. The 1σ errors are read from Fig. 6(a) of SMY 04. $^{28}\,\text{SMY}$ 04 obtained this result by a two-neutrino oscillation analysis using the Super-Kamiokande and SNO (AHMAD 02 and AHMAD 02B) solar neutrino data. The 1σ errors are read from Fig. 6(a) of SMY 04. 29 AHMAD 02B obtained this result by a two-neutrino oscillation analysis using the data from all solar neutrino experiments. The listed range of the parameter envelops the 95% CL two-dimensional region shown in Fig. 4(b) of AHMAD 02B. The best fit point is $\Delta(m^2)=5.0\times 10^{-5}~{\rm eV}^2$ and $\tan\theta=0.34~(\sin^2\!2~\theta=0.76).$ 30 FUKUDA 02 obtained this result by a two-neutrino oscillation analysis using the data from all solar neutrino experiments. The listed range of the parameter envelops the 95% CL two-dimensional region shown in Fig. 4 of FUKUDA 02. The best fit point is $\Delta(m^2)$ = 6.9×10^{-5} eV² and $\tan^2\theta = 0.38$ ($\sin^2\theta = 0.80$). NODE=S067DM3;LINKAGE=AE NODE=S067DM3;LINKAGE=AD NODE=S067DM3;LINKAGE=SD NODE=S067DM3;LINKAGE=SF NODE=S067DM3;LINKAGE=SG NODE=S067DM3;LINKAGE=HM NODE=S067DM3;LINKAGE=FU ## $\sin^2(2\theta_{23})$ The ranges below correspond to the projection onto the $\sin^2(2\theta_{23})$ axis of the 90% CL contours in the $\sin^2(2\theta_{23}) - \Delta m_{32}^2$ plane presented by the authors. If uncertainties are reported with the value, they correspond to one standard deviation uncertainty. NODE=S067T23 NODE=S067T23 | VALUE | DOCUMENT ID | | <u>TECN</u> | COMMENT | NODE=S067T23 | |--|--|-------------|-------------|---|--------------| | >0.95 | ¹ ABE | 11 C | SKAM | Super-Kamiokande | | | ● ● We do not | use the following da | ita for | average | s, fits, limits, etc. • • • | | | 0.84 - 1.0 | ² ABE | 12A | T2K | off-axis beam | | | >0.75 | ³ ADAMSON | 12 | MINS | $\overline{ u}$ beam | | | >0.815 | ^{4,5} ADAMSON | 12 B | MINS | MINOS atmospheric | | | >0.78 | ^{4,6} ADAMSON | 12 B | MINS | MINOS pure atmospheric $ u$ | OCCUR=2 | | >0.67 | ^{4,6}
ADAMSON | | MINS | MINOS pure atmospheric $\overline{ u}$ | OCCUR=3 | | >0.51 | ⁷ ADRIAN-MAR | 12 | ANTR | atmospheric $ u$ with deep see telescope | | | >0.90 | ADAMSON | 11 | MINS | 2 u oscillation; maximal mixing | | | $0.86 \begin{array}{l} +0.11 \\ -0.12 \end{array}$ | ⁸ ADAMSON | 11 B | MINS | $\overline{ u}$ beam | | | >0.965 | 9 WENDELL | 10 | SKAM | 3ν oscillation with solar terms; θ_{13} =0 | | | >0.95 | 10 WENDELL | 10 | SKAM | 3ν oscillation; normal mass hierarchy | OCCUR=2 | | >0.93 | ¹¹ WENDELL | 10 | SKAM | 3ν oscillation; inverted mass hierarchy | OCCUR=3 | | >0.85 | ADAMSON | A80 | MINS | MINOS | | | >0.2 | 12 ADAMSON | 06 | MINS | atmospheric $ u$ with far detector | | | >0.59 | ¹³ AHN | 06A | K2K | KEK to Super-K | | | >0.7 | 14 MICHAEL | 06 | MINS | MINOS | | | >0.58 | ¹⁵ ALIU | 05 | K2K | KEK to Super-K | OCCUR=2 | | >0.6 | 16 ALLISON | 05 | SOU2 | | | | >0.92 | 17 ASHIE | 05 | | Super-Kamiokande | | | >0.80 | 18 AMBROSIO | 04 | | MACRO | OCCUR=2 | | >0.90 | 19 ASHIE | 04 | | L/E distribution | OCCUR=2 | | >0.30 | ²⁰ AHN | 03 | K2K | KEK to Super-K | | | >0.45 | ²¹ AMBROSIO | 03 | | MACRO | | | >0.77 | ²² AMBROSIO | 03 | | MACRO | OCCUR=2 | | >0.50 | ²³ SANCHEZ | 03 | | Soudan-2 Atmospheric | | | >0.80 | 24 AMBROSIO | 01 | | upward μ | 0.66110 | | >0.82 | ²⁵ AMBROSIO | 01 | | upward μ | OCCUR=2 | | >0.45 | ²⁶ FUKUDA | | | upward μ | | | >0.70 | ²⁷ FUKUDA
²⁸ FUKUDA | | | upward μ | OCCUP A | | >0.30 | ²⁹ FUKUDA | | | stop μ / through | OCCUR=2 | | >0.82 | 30 HATAKEYAM | 98C | KAMI | Super-Kamiokande
Kamiokande | | | >0.30
>0.73 | 31 HATAKEYAM | 498
100 | KAMI | Kamiokande
Kamiokande | OCCUR=2 | | | 32 FUKUDA | 498
94 | KAMI | Kamiokande
Kamiokande | OCCUR=2 | | >0.65 | FUNUDA | 94 | TVHIVII | rvannokande | | 1 ABE 11C obtained this result by a two-neutrino oscillation analysis using the Super-Kamiokande-I+II+III atmospheric neutrino data. ABE 11C also reported results under a two-neutrino disappearance model with separate mixing parameters between ν and $\overline{\nu},$ and obtained $\sin^2\!2\theta > 0.93$ for ν and $\sin^2\!2\theta > 0.83$ for $\overline{\nu}$ at 90% C.L. 2 ABE 12A obtained this result by a two-neutrino oscillation analysis. The best-fit point is ABE 12A obtained this result by a two-neutrino oscillation analysis. The best-fit point is $\sin^2(2\theta_{23}) = 0.98$. 3 ADAMSON 12 is a two-neutrino oscillation analysis using antineutrinos. The best fit value is $\sin^2(2\theta_{23})=0.95^{+0.10}_{-0.11}\pm0.01.$ $^4\,\text{ADAMSON}$ 12B obtained this result by a two-neutrino oscillation analysis of the L/E distribution using 37.9 kton-yr atmospheric neutrino data with the MINOS far detector. ⁵ The best fit point is $\Delta m^2 = 0.0019 \text{ eV}^2$ and $\sin^2 2\theta = 0.99$. The 90% single-parameter confidence interval at the best fit point is $\sin^2 2\theta > 0.86$. ⁶ The data are separated into pure samples of νs and $\overline{\nu} s$, and separate oscillation parameters for νs and $\overline{\nu} s$ are fit to the data. The best fit point is $(\Delta m^2, \sin^2 2\theta) = (0.0022 \text{ eV}^2, 0.99)$ and $(\Delta \overline{m}^2, \sin^2 2\overline{\theta}) = (0.0016 \text{ eV}^2, 1.00)$. The quoted result is taken from the 90% C.L. contour in the $(\Delta m^2, \sin^2 2\theta)$ plane obtained by minimizing the four parameter log-likelihood function with respect to the other oscillation parameters. ⁷ ADRIAN-MARTINEZ 12 measured the oscillation parameters of atmospheric neutrinos with the ANTARES deep sea neutrino telescope using the data taken from 2007 to 2010 (863 days of total live time). 8 ADAMSON 11B obtained this result by a two-neutrino oscillation analysis of antineutrinos in an antineutrino enhanced beam with 1.71×10^{20} protons on target. This results is consistent with the neutrino measurements of ADAMSON 11 at 2% C.L. consistent with the neutrino measurements of ADAMSON 11 at 2% C.L. WENDELL 10 obtained this result ($\sin^2\!\theta_{23}=0.407\text{-}0.583$) by a three-neutrino oscillation analysis using the Super-Kamiokande-I+II+III atmospheric neutrino data, assuming $\theta_{13}=0$ but including the solar oscillation parameters Δm_{21}^2 and $\sin^2\!\theta_{12}$ in the fit. 10 WENDELL 10 obtained this result (sin $^2\theta_{23}=0.43-0.61)$ by a three-neutrino oscillation analysis with one mass scale dominance ($\Delta m_{21}^2=0$) using the Super-Kamiokande-I+II+III atmospheric neutrino data, and updates the HOSAKA 06A result. 11 WENDELL 10 obtained this result (sin $^2\theta_{23}=0.44-0.63$) by a three-neutrino oscillation analysis with one mass scale dominance ($\Delta m_{21}^2=0$) using the Super-Kamiokande-I+II+III atmospheric neutrino data, and updates the HOSAKA 06A result. 12 ADAMSON 06 obtained this result by a two-neutrino oscillation analysis of the L/E distribution using 4.54 kton yr atmospheric neutrino data with the MINOS far detector. ¹³ Supercedes ALIU 05. $^{14}\,\mathrm{MICHAEL}$ 06 best fit is for maximal mixing. See also ADAMSON 08. $^{15}\,\mathrm{The}$ best fit is for maximal mixing. ¹⁶ ALLISON 05 result is based upon atmospheric neutrino interactions including upward-stopping muons, with an exposure of 5.9 kton yr. From a two-flavor oscillation analysis the best-fit point is $\Delta m^2 = 0.0017 \text{ eV}^2$ and $\sin^2(2\theta) = 0.97$. 17 ASHIE 05 obtained this result by a two-neutrino oscillation analysis using 92 kton yr atmospheric neutrino data from the complete Super-Kamiokande I running period. 18 AMBROSIO 04 obtained this result, without using the absolute normalization of the neutrino flux, by combining the angular distribution of upward through-going muon tracks with $E_{\mu} > 1$ GeV, N_{low} and N_{high} , and the numbers of InDown + UpStop and InUp events. Here, N_{low} and N_{high} are the number of events with reconstructed neutrino energies < 30 GeV and > 130 GeV, respectively. InDown and InUp represent events with downward and upward-going tracks starting inside the detector due to neutrino interactions, while UpStop represents entering upward-going tracks which stop in the detector. The best fit is for maximal mixing. 19 ASHIE 04 obtained this result from the L(flight length)/E(estimated neutrino energy) distribution of ν_{μ} disappearance probability, using the Super-Kamiokande-I 1489 live-day atmospheric neutrino data. 20 There are several islands of allowed region from this K2K analysis, extending to high values of Δm^2 . We only include the one that overlaps atmospheric neutrino analyses. The best fit is for maximal mixing. 21 AMBROSIO 03 obtained this result on the basis of the ratio R = N $_{low}/N_{high}$, where N $_{low}$ and N $_{high}$ are the number of upward through-going muon events with reconstructed neutrino energy < 30 GeV and > 130 GeV, respectively. The data came from the full detector run started in 1994. The method of FELDMAN 98 is used to obtain the limits. 22 AMBROSIO 03 obtained this result by using the ratio R and the angular distribution of the upward through-going muons. R is given in the previous note and the angular distribution is reported in AMBROSIO 01. The method of FELDMAN 98 is used to obtain the limits. The best fit is to maximal mixing. ²³SANCHEZ 03 is based on an exposure of 5.9 kton yr. The result is obtained using a likelihood analysis of the neutrino L/E distribution for a selection μ flavor sample while the e-flavor sample provides flux normalization. The method of FELDMAN 98 is used to obtain the allowed region. The best fit is $\sin^2(2\theta) = 0.97$. ²⁴ AMBROSIO 01 result is based on the angular distribution of upward through-going muon tracks with $E_{tt} > 1$ GeV. The data came from three different detector configurations, but NODE=S067T23;LINKAGE=EA NODE=S067T23;LINKAGE=AE NODE=S067T23;LINKAGE=DA NODE=S067T23;LINKAGE=A0 NODE=S067T23;LINKAGE=A1 NODE=S067T23;LINKAGE=A2 NODE=S067T23;LINKAGE=AT NODE=S067T23;LINKAGE=AA NODE=S067T23;LINKAGE=WE NODE=S067T23;LINKAGE=WN NODE=S067T23;LINKAGE=WD NODE=S067T23;LINKAGE=AD NODE=S067T23;LINKAGE=AN NODE=S067T23;LINKAGE=MI NODE=S067T23;LINKAGE=AI NODE=S067T23;LINKAGE=AL NODE=S067T23;LINKAGE=AS NODE=S067T23;LINKAGE=AM NODE=S067T23;LINKAGE=SH NODE=S067T23;LINKAGE=AH NODE=S067T23;LINKAGE=AO ${\sf NODE}{=}{\sf S067T23;} {\sf LINKAGE}{=}{\sf MB}$ NODE=S067T23;LINKAGE=SA NODE=S067T23;LINKAGE=AB the statistics is largely dominated by the full detector run, from May 1994 to December 2000. The total live time, normalized to the full detector configuration is 6.17 years. The best fit is obtained outside the physical region. The method of FELDMAN 98 is used to obtain the limits. The best fit is for maximal mixing. 25 AMBROSIO 01 result is based on the angular distribution and normalization of upward through-going muon tracks with $E_{\mu}~>1$ GeV. See the previous footnote. 26 FUKUDA 99C obtained this result from a total of 537 live days of upward through-going muon data in Super-Kamiokande between April 1996 to January 1998. With a threshold of $E_{\mu}~>1.6$ GeV, the observed flux is (1.74 $\pm~0.07~\pm~0.02)\times10^{-13}~\rm cm^{-2}s^{-1}sr^{-1}$. The best fit is $\sin^2(2\theta)=0.95$. 27 FUKUDA 99D obtained this result from a simultaneous fitting to zenith angle distributions of upward-stopping and through-going muons. The flux of upward-stopping muons of minimum energy of 1.6 GeV measured between April 1996 and January 1998 is (0.39 \pm 0.04 \pm 0.02) \times 10 $^{-13}$ cm $^{-2}$ sr $^{-1}$. This is compared to the expected flux of (0.73 \pm 0.16 (theoretical error)) \times 10 $^{-13}$ cm $^{-2}$ sr $^{-1}$. The best fit is to maximal mixing. 28 FUKUDA 99D obtained this result from the zenith dependence of the upward-stopping/through-going flux ratio. The best fit is to maximal mixing. 29 FUKUDA 98C obtained this result by an analysis of 33.0 kton yr atmospheric neutrino data.
The best fit is for maximal mixing. 30 HATAKEYAMA 98 obtained this result from a total of 2456 live days of upward-going muon data in Kamiokande between December 1985 and May 1995. With a threshold of $E_{\mu} > 1.6$ GeV, the observed flux of upward through-going muons is $(1.94 \pm 0.10 {+0.07 \atop -0.06}) \times 10^{-13}$ cm $^{-2} {\rm s}^{-1} {\rm s}^{-1}$. This is compared to the expected flux of (2.46 ± 0.54 (theoretical error)) $\times 10^{-13}$ cm $^{-2} {\rm s}^{-1} {\rm s}^{-1}$. The best fit is for maximal mixing. ³¹ HATAKEYAMA 98 obtained this result from a combined analysis of Kamiokande contained events (FUKUDA 94) and upward going muon events. The best fit is $\sin^2(2\theta) = 0.95$. 32 FUKUDA 94 obtained the result by a combined analysis of sub- and multi-GeV atmospheric neutrino events in Kamiokande. The best fit is for maximal mixing. ### NODE=S067T23;LINKAGE=UK NODE=S067T23;LINKAGE=AR NODE=S067T23;LINKAGE=FU NODE=S067T23;LINKAGE=UU NODE=S067T23;LINKAGE=FK NODE=S067T23;LINKAGE=HA NODE=S067T23;LINKAGE=HT NODE=S067T23;LINKAGE=FD ## Δm_{32}^2 0.6 - 7.0 0.15 - 15 0.6 - 15 1.0 - 6.0 1.0 - 50 1.5 - 15.0 The sign of Δm_{32}^2 is not known at this time. Only the absolute value is quoted below. Unless otherwise specified, the ranges below correspond to the projection onto the Δm_{32}^2 axis of the 90% CL contours in the $\sin^2(2\theta_{23}) - \Delta m_{32}^2$ plane presented by the authors. If uncertainties are reported with the value, they correspond to one standard deviation uncertainty. $^{21}\,\mathrm{AMBROSIO}$ ²² SANCHEZ ²³ AMBROSIO ²⁴ AMBROSIO ²⁵ FUKUDA ²⁶ FUKUDA 03 03 01 01 OCCUR=2 OCCUR=2 NODE=S067DM1 NODE=S067DM1 | deviation uncert | allity. | | | | | | |---|---|------------------------------|-----------------------------|---|---|--------------------| | $VALUE (10^{-3} \text{ eV}^2)$ | DOCUMENT ID | | TECN | COMMENT | | NODE=S067DM1 | | $2.32_{-0.08}^{+0.12}$ | ADAMSON | 11 | MINS | 2ν oscillation; maximal mixing | | | | • • • We do not use t | the following data for a | averag | ges, fits, | limits, etc. • • • | | | | 2.2-3.1 | ¹ ABE | 12A | T2K | off-axis beam | | | | $2.62^{\color{red}+0.31}_{-0.28}\!\pm\!0.09$ | ² ADAMSON | 12 | MINS | $\overline{ u}$ beam | ı | | | 1.35-2.55
1.4-5.6
0.9-2.5
1.8-5.0
1.3-4.0 | 3,4 ADAMSON
3,5 ADAMSON
3,5 ADAMSON
6 ADRIAN-MAR
7 ABE | | | MINOS atmospheric MINOS pure atmospheric $\overline{\nu}$ MINOS pure atmospheric $\overline{\overline{\nu}}$ atm. ν with deep see telescope atmospheric $\overline{\overline{\nu}}$ | | OCCUR=2
OCCUR=3 | | $3.36^{+0.46}_{-0.40}$ | ⁸ ADAMSON | 11 B | MINS | $\overline{ u}$ beam | | | | <3.37 $1.9-2.6$ $1.7-2.7$ 2.43 ± 0.13 $0.07-50$ $1.9-4.0$ | 9 ADAMSON
10 WENDELL
10 WENDELL
ADAMSON
11 ADAMSON
12,13 AHN | 10
10
08A
06
06A | SKAM
MINS
MINS
K2K | MINOS 3ν osc.; normal mass hierarchy 3ν osc.; inverted mass hierarchy MINOS atmospheric ν with far detector KEK to Super-K | | OCCUR=2 | | 2.2–3.8
1.9–3.6
0.3–12
1.5–3.4 | ¹⁴ MICHAEL
¹² ALIU
¹⁵ ALLISON
¹⁶ ASHIE | 06
05
05
05 | MINS
K2K
SOU2
SKAM | MINOS KEK to Super-K atmospheric neutrino | | OCCUR=2 | | 0.6–8.0
1.9 to 3.0
1.5–3.9
0.25–9.0 | 17 AMBROSIO
18 ASHIE
19 AHN
20 AMBROSIO | 04
04
03
03 | MCRO
SKAM
K2K | MACRO L/E distribution KEK to Super-K MACRO | | OCCUR=2
OCCUR=2 | MCRO MACRO MCRO upward μ MCRO upward μ 99C SKAM upward μ 99D SKAM upward μ SOU2 Soudan-2 Atmospheric | 0.7–18
0.5–6.0 | 27 FUKUDA 99D SKAM stop μ / through 98C SKAM Super-Kamiokande | OCCUR=2 | |--|--|---| | 0.55–50
4–23
5–25 | HATAKEYAMA98 KAMI Kamiokande HATAKEYAMA98 KAMI Kamiokande FUKUDA 94 KAMI Kamiokande | OCCUR=2 | | 1 ABE 12A obtained th $\Delta m^{2}_{32} = 2.65 imes 10^{-}$ | is result by a two-neutrino oscillation analysis. The best-fit ${}^{13}\mathrm{eV}^2.$ | point is NODE=S067DM1;LINKAGE=AE | | ³ ADAMSON 12B obt | wo-neutrino oscillation analysis using antineutrinos.
ained this result by a two-neutrino oscillation analysis of t
9 kton·yr atmospheric neutrino data with the MINOS far de | NODE=S067DM1;LINKAGE=DA NODE=S067DM1;LINKAGE=A0 | | ⁴ The 90% single-para
0.0004 eV ² . | meter confidence interval at the best fit point is $\Delta m^2 = 0.0$ | 0019 ± NODE=S067DM1;LINKAGE=A1 | | ⁵ The data are separate
for ν s and $\overline{\nu}$ s are fit
0.99) and $(\Delta \overline{m}^2$, sin | ed into pure samples of ν s and $\overline{\nu}$ s, and separate oscillation parato the data. The best fit point is $(\Delta m^2, \sin^2 2\theta) = (0.002 e^2 2\overline{\theta}) = (0.0016 eV^2, 1.00)$. The quoted result is taken from the $(\Delta m^2, \sin^2 2\theta)$ plane obtained by minimizing the four parameters. | 22 eV ² ,
om the | | log-likelihood functio | n with respect to the other oscillation parameters. | | | with the ANTARES of (863 days of total liv | Z 12 measured the oscillation parameters of atmospheric nedeep sea neutrino telescope using the data taken from 2007 te time). | to 2010 | | parameters between
atmospheric neutring
range obtained from | his result by a two-neutrino oscillation analysis with separate neutrinos and antineutrinos, using the Super-Kamiokande-I data. The corresponding 90% CL neutrino oscillation parthis analysis is $\Delta m^2 = 1.7$ –3.0 \times 10 ⁻³ eV ² . | +II+III
rameter | | in an antineutrino er | ined this result by a two-neutrino oscillation analysis of antine thanced beam with 1.71×10^{20} protons on target. This researchino measurements of ADAMSON 11 at 2% C.L. which this result based on a study of antineutrinos in a neutrinos. | esults is | | and assumes maxima | Il mixing in the two-flavor approximation. | · · | | scale dominance (Δ r | ned this result by a three-neutrino oscillation analysis with or $m_{21}^2=0$) using the Super-Kamiokande-I $+$ II $+$ III atmospher tes the HOSAKA 06A result. | | | ¹¹ ADAMSON 06 obta | ined this result by a two-neutrino oscillation analysis of t
4 kton yr atmospheric neutrino data with the MINOS far do | he L/E NODE=S067DM1;LINKAGE=AD etector. | | ¹² The best fit in the pl
¹³ Supercedes ALIU 05.
¹⁴ MICHAEL 06 best fit | hysical region is for $\Delta m^2 = 2.8 \times 10^{-3} \text{ eV}^2$. | NODE=S067DM1;LINKAGE=AI
NODE=S067DM1;LINKAGE=AN
NODE=S067DM1;LINKAGE=MI | | | two-flavor oscillation analysis the best-fit point is $\Delta m^2 =$ | | | ¹⁶ ASHIE 05 obtained | this result by a two-neutrino oscillation analysis using 92 leads from the complete Super-Kamiokande I running perio | | | 17 AMBROSIO 04 obtaineutrino flux, by comwith $E_{\mu} > 1$ GeV, Nevents. Here, N $_{low}$ energies $<$ 30 GeV with downward and interactions, while U | ained this result, without using the absolute normalization bining the angular distribution of upward through-going muor N_{low} and N_{high} , and the numbers of InDown + UpStop ar and N_{high} are the number of events with reconstructed n and > 130 GeV, respectively. InDown and InUp represent upward-going tracks starting inside the detector due to n lpStop represents entering upward-going tracks which stop t is for $\Delta m^2 = 2.3 \times 10^{-3} \; {\rm eV}^2$. | n tracks nd InUp neutrino events neutrino | | 18 ASHIE 04 obtained the distribution of $ u_{\mu}$ distribution of $ u_{\mu}$ | this result from the L(flight length)/E(estimated neutrino appearance probability, using the Super-Kamiokande-I 1489 length). The best fit is for $\Delta m^2 = 2.4 \times 10^{-3} \text{ eV}^2$. | energy) NODE=S067DM1;LINKAGE=SH live-day | | ¹⁹ There are several islance values of Δm^2 . We The best fit is for Δm^2 . | ands of allowed region from this K2K analysis, extending only include the one that overlaps atmospheric neutrino at $m^2 = 2.8 \times 10^{-3} \text{ eV}^2$. | nalyses. | | N_{low} and N_{high} ar structed neutrino ene | ined this result on the basis of the ratio R = N $_{low}/N_{high}$ e the number of upward through-going muon events with ergy $<$ 30 GeV and $>$ 130 GeV, respectively. The data cam started in 1994. The method of FELDMAN 98 is used to fit is for $\Delta m^2 = 2.5 \times 10^{-3} \; \rm eV^2$. | recon-
ne from | | of the upward through distribution is report obtain the limits. The | sined this result by using the ratio R and the angular distribution gh-going muons. R is given in the previous note and the ed in AMBROSIO 01. The method of FELDMAN 98 is the best fit is for $\Delta m^2 = 2.5 \times 10^{-3} \text{ eV}^2$. | ribution NODE=S067DM1;LINKAGE=MB angular used to | | ²² SANCHEZ 03 is bas
likelihood analysis of
the <i>e</i> -flavor sample p | ed on an exposure of 5.9 kton yr. The result is obtained the neutrino L/E distribution for a selection μ flavor sample provides flux normalization. The
method of FELDMAN 98 I region. The best fit is for $\Delta m^2 = 5.2 \times 10^{-3} \; \text{eV}^2$. | le while | 23 AMBROSIO 01 result is based on the angular distribution of upward through-going muon tracks with $E_{\iota\iota} > 1$ GeV. The data came from three different detector configurations, but the statistics' is largely dominated by the full detector run, from May 1994 to December 2000. The total live time, normalized to the full detector configuration is 6.17 years. The best fit is obtained outside the physical region. The method of FELDMAN 98 is used to obtain the limits. AMBROSIO 01 result is based on the angular distribution and normalization of upward through-going muon tracks with $E_{\mu}~>1$ GeV. See the previous footnote. 25 FUKUDA 99C obtained this result from a total of 537 live days of upward through-going muon data in Super-Kamiokande between April 1996 to January 1998. With a threshold of $E_{\mu} >$ 1.6 GeV, the observed flux is (1.74 \pm 0.07 \pm 0.02) imes 10 $^{-13}$ cm $^{-2}$ s $^{-1}$ sr $^{-1}$. The best fit is for $\Delta m^2=5.9\times 10^{-3}~\text{eV}^2.$ 26 FUKUDA 99D obtained this result from a simultaneous fitting to zenith angle distributions of upward-stopping and through-going muons. The flux of upward-stopping muons of minimum energy of 1.6 GeV measured between April 1996 and January 1998 is (0.39 \pm $0.04\pm0.02)\times10^{-13}$ cm $^{-2}$ s $^{-1}$ sr $^{-1}$. This is compared to the expected flux of $(0.73\pm0.16$ (theoretical error)) \times 10^{-13} cm $^{-2}$ s $^{-1}$ sr $^{-1}$. The best fit is for Δ $m^2=3.9\times10^{-3}$ eV^2 27 FUKUDA 99D obtained this result from the zenith dependence of the upwardstopping/through-going flux ratio. The best fit is for $\Delta m^2 = 3.1 \times 10^{-3} \text{ eV}^2$. ²⁸ FUKUDA 98C obtained this result by an analysis of 33.0 kton yr atmospheric neutrino data. The best fit is for $\Delta m^2 = 2.2 \times 10^{-3} \text{ eV}^2$. HATAKEYAMA 98 obtained this result from a total of 2456 live days of upward-going muon data in Kamiokande between December 1985 and May 1995. With a threshold of $E_{\mu} >$ 1.6 GeV, the observed flux of upward through-going muons is $(1.94\pm0.10^{+0.07}_{-0.06}) imes$ $10^{-13}~\text{cm}^{-2}\text{s}^{-1}\text{sr}^{-1}$. This is compared to the expected flux of (2.46 \pm 0.54 (theoretical error)) \times 10⁻¹³ cm⁻²s⁻¹sr⁻¹. The best fit is for $\Delta m^2 = 2.2 \times 10^{-3}$ eV². $^{30}\,\mathrm{HATAKEYAMA}$ 98 obtained this result from a combined analysis of Kamiokande contained events (FUKUDA 94) and upward going muon events. The best fit is for $\Delta m^2 =$ $13 \times 10^{-3} \text{ eV}^2$. 31 FUKUDA 94 obtained the result by a combined analysis of sub- and multi-GeV atmospheric neutrino events in Kamiokande. The best fit is for $\Delta m^2 = 16 \times 10^{-3} \text{ eV}^2$. #### $\sin^2(2\theta_{13})$ 0.06 ± 0.04 At present time direct measurements of $\sin^2(2\,\theta_{13})$ are derived from the reactor $\overline{\nu}_e$ disappearance at distances corresponding to the Δm_{32}^2 value, i.e. L ~ 1 km. Alternatively, limits can also be obtained from the analysis of the solar neutrino data and accelerator-based $u_{\mu} ightarrow u_{e}$ experiments. DOCUMENT ID TECN COMMENT 0.095±0.010 OUR AVERAGE NEW $[0.098 \pm 0.013 \text{ OUR } 2012 \text{ AVERAGE}]$ 1 AN $0.089 \pm 0.010 \pm 0.005$ 13 DAYA DayaBay, Llng Ao/Ao II reactors ² ABE $0.109 \pm 0.030 \pm 0.025$ 12B DCHZ Chooz reactors ³ AHN $0.113 \pm 0.013 \pm 0.019$ 12 RENO Yonggwang reactors • • • We do not use the following data for averages, fits, limits, etc. • • • ⁴ ABE DCHZ Chooz reactors $0.086 \pm 0.041 \pm 0.030$ 12 5 AN $0.092 \pm 0.016 \pm 0.005$ 12 DAYA DayaBay, Llng Ao/Ao II reactors $0.098 \! \begin{array}{l} \! +0.067 \\ \! -0.062 \! \end{array}$ ⁶ ABE 68 11 FIT KamLAND + global solar $^{7}\,\mathrm{ABE}$ < 0.23 95 11 FIT Global solar OCCUR=2 ⁸ ABE 0.05 - 0.21 T2K 68 11A Normal mass hierarchy $^{9}\,\mathrm{ABE}$ 0.06 - 0.25 T2K 68 Inverted mass hierarchy OCCUR=2 11A $^{10}\,\mathrm{ADAMSON}$ 0.01 - 0.09 68 11D MINS Normal mass hierarchy ¹¹ ADAMSON 0.03 - 0.1568 11D MINS Inverted mass hierarchy OCCUR=2 ¹² FOGLI 0.08 ± 0.03 68 FIT 11 Global neutrino data $^{13}\,\mathrm{GANDO}$ 0.078 ± 0.062 68 FIT KamLAND + solar: 3ν 11 ¹⁴ GANDO 0.124 ± 0.133 68 11 FIT KamLAND: 3ν OCCUR=2 $0.03 \begin{array}{l} +0.09 \\ -0.07 \end{array}$ ¹⁵ ADAMSON MINS 90 10A Normal mass hierarchy $0.06 \begin{array}{l} +0.14 \\ -0.06 \end{array}$ OCCUR=2 90 ¹⁶ ADAMSON 10A MINS Inverted mass hierarchy $0.08 \begin{array}{l} +0.08 \\ -0.07 \end{array}$ 17,18 AHARMIM 10 FIT KamLAND + global solar: 3ν 95^{17,19} AHARMIM < 0.30 10 FIT global solar: 3ν OCCUR=2 < 0.15 90 ²⁰ WENDELL 10 SKAM 3ν osc.; normal m hierarchy < 0.33 ²⁰ WENDELL 10 SKAM 3ν osc.; inverted m hierarchy OCCUR=2 $0.11 \ ^{+0.11}_{-0.08}$ ²¹ ADAMSON 09 MINS Normal mass hierarchy $0.18 \begin{array}{l} +0.15 \\[-4pt] -0.11 \end{array}$ OCCUR=2 ²² ADAMSON 09 MINS Inverted mass hierarchy ²³ FOGLI 08 FIT Global neutrino data NODE=S067DM1;LINKAGE=AB NODE=S067DM1;LINKAGE=AR NODE=S067DM1:LINKAGE=FU NODE=S067DM1;LINKAGE=UA NODE=S067DM1;LINKAGE=UU NODE=S067DM1;LINKAGE=FK NODE=S067DM1;LINKAGE=HA NODE=S067DM1;LINKAGE=HT NODE=S067DM1;LINKAGE=FD NODE=S067T13 NODE=S067T13 NODE=S067T13 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | K2K Accelerator experiment Palo Verde react. Palo Verde react. CHOZ Reactor Experiment | OCCUR=2
OCCUR=3 | |---|---|-------------------------| | distance of 1628 m from all six reactor cores
This is an improved result (2.5 times increa | ing three at the far hall (at the flux averaged.) to determine the $\overline{\nu}_e$ interaction rate ratios. se in statistics) compared to AN 12. | NODE=S067T13;LINKAGE=NA | | ² ABE 12B determine the neutrino mixing angles from the cores of two reactors. This result is | le θ_{13} using a single detector, located 1050 m | NODE=S067T13;LINKAGE=AE | | ³ AHN 12 use two identical detectors, placed
1433.99 m from six reactor cores, to deter | at flux weighted distances of 408.56 m and mine the mixing angle θ_{13} . This rate-only is at 4.9 standard deviations. The value of | NODE=S067T13;LINKAGE=HA | | experiment, thus avoiding any dependence | n a single detector, located 1050 m from the
n is fixed by the results of the Bugey4 reactor
on possible very short baseline oscillations.
sed in the analysis. Superseded by ABE 12B. | NODE=S067T13;LINKAGE=AB | | 5 AN 12 use six identical detectors with three baselines of 498 m and 555 m) and the remai distance of 1628 m from all six reactor core the $\overline{\nu}_e$ observed interaction rate ratios. This hypothesis at 5.2 standard deviations. The | placed near the reactor cores (flux-weighted ning three at the far hall (at the flux averaged es) to determine the mixing angle θ_{13} using rate-only analysis excludes the no-oscillation value of $\Delta m_{31}^2 = (2.32 {+} 0.18) \times 10^{-3} \text{ eV}^2$ | NODE=S067T13;LINKAGE=AN | | | \prime AN 13. utrino oscillation analysis with the value of reutrino data including Super-Kamiokande, take, GALLEX/GNO, SAGE, and KamLAND f $\sin^2\!\theta_{13} <$ 0.059 (95% CL) or $\sin^2\!2\theta_{13} <$ hierarchy and CPT invariance are assumed. | NODE=S067T13;LINKAGE=B1 | | ⁷ ABE 11 obtained this result by a three-ne Δm_{22}^2 fixed to 2.4×10^{-3} eV ² , using solar | utrino oscillation analysis with the value of reutrino data including Super-Kamiokande, stake, and GALLEX/GNO data. The normal | NODE=S067T13;LINKAGE=B2 | | 8 The quoted limit is for $\Delta m^{2}_{32}=2.4 \times 10^{-1}$ | $^{-3}$ eV 2 , $\theta_{23}=\pi/2$, $\delta=0$, and the normal 8% region spans from 0.03 to 0.25, and the | NODE=S067T13;LINKAGE=E1 | | 9 The quoted limit is for $\Delta m^2_{32} = 2.4 \times 10^-$ | 3 eV ² , $\theta_{23}=\pi/2$, $\delta=$ 0, and the inverted i8% region spans from 0.04 to 0.30, and the | NODE=S067T13;LINKAGE=E2 | | ¹⁰ The quoted limit is for $\Delta m_{32}^2 = 2.32 \times 10^{\circ}$ mass hierarchy. For other values of δ , the 6 90% region from 0 to 0.16. | 18% region spans from 0.02 to 0.12, and the | NODE=S067T13;LINKAGE=D1 | | 90% region from 0 to 0.21. | 68% region spans from 0.02 to 0.16, and the | NODE=S067T13;LINKAGE=D2 | | average increase of about 3.5% in normali
these fluxes, the fitted result becomes 0.10 | lata. Recently, MUELLER 11 suggested an zation of the reactor \overline{v}_e fluxess, and using $\pm~0.03$. | NODE=S067T13;LINKAGE=OG | | 13 GANDO 11 report $\sin^2\theta_{13} = 0.020 \pm 0.016$. fit using the KamLAND $+$ solar data. | This result was obtained with three-neutrino | NODE=S067T13;LINKAGE=GA | | $^{14}\mathrm{GANDO}$ 11 report $\mathrm{sin}^2\theta_{13}=0.032\pm0.037.$ fit using the KamLAND data only. | This result was obtained with three-neutrino | NODE=S067T13;LINKAGE=GN | | ¹⁵ This result corresponds to the limit of <0.12 $\theta_{23}=\pi/2$, and $\delta=0$. For other values of | $\delta,$ the 90% CL region spans from 0 to 0.16. | NODE=S067T13;LINKAGE=AS | | ¹⁶ This result corresponds to the limit of <0.20 $\theta_{22} = \pi/2$, and $\delta = 0$. For other values of | 0 at 90% CL for $\Delta m_{32}^2 = 2.43 \times 10^{-3} \text{ eV}^2$, δ , the 90% CL region spans from 0 to 0.21. | NODE=S067T13;LINKAGE=AO | | ¹⁷ AHARMIM 10 global solar neutrino data i
survival probability
day/night curves, SNO
(CLEVELAND 98), SAGE (ABDURASHIT | | NODE=S067T13;LINKAGE=A0 | | 18 AHARMIM 10 obtained this result by a three of Δm_{31}^2 fixed to 2.3×10^{-3} eV ² , using glo | obal solar neutrino data and KamLAND data
is result implies an upper bound of $\sin^2\! heta_{13} <$ | NODE=S067T13;LINKAGE=A1 | $^{ m 19}$ AHARMIM 10 obtained this result by a three-neutrino oscillation analysis with the value of Δm_{31}^2 fixed to 2.3×10^{-3} eV², using global solar neutrino data. $^{20}\hspace{0.05cm}\text{WENDELL}$ 10 obtained this result by a three-neutrino oscillation analysis with one mass scale dominance ($\Delta m_{21}^2 = 0$) using the Super-Kamiokande-I+II+III atmospheric neutrino data and $\Delta m_{21}^2 = 0$ trino data, and updates the HOSAKA 06A result. 21 The quoted limit is for $\Delta m_{32}^2 = 2.43 \times 10^{-3} \text{ eV}^2$, $\theta_{23} = \pi/2$, and $\delta = 0$. For other values of δ , the 68% CL region spans from 0.02 to 0.26. 22 The quoted limit is for $\Delta m_{32}^2 = 2.43 \times 10^{-3} \text{ eV}^2$, $\theta_{23} = \pi/2$, and $\delta = 0$. For other values of δ , the 68% CL region spans from 0.04 to 0.34. values of δ , the 68% CL region spans from 0.04 to 0.34 23 FOGLI 08 obtained this result from a global analysis of all neutrino oscillation data, that is, solar + KamLAND + atmospheric + accelerator long baseline + CHOOZ. $^{24}\hspace{-0.05cm}\mathsf{FOGLI}$ 08 obtained this result from an analysis using the solar and KamLAND neutrino oscillation data. 25 FOGLI 08 obtained this result from an analysis using the atmospheric, accelerator long baseline, and CHOOZ neutrino oscillation data. 26 YAMAMOTO 06 searched for $\nu_{\mu} \rightarrow \nu_{e}$ appearance. Assumes 2 $\sin^{2}(2\theta_{\mu\,e})=\sin^{2}(2\theta_{13}).$ The quoted limit is for $\Delta m^{2}_{32}=1.9\times 10^{-3}~\text{eV}^{2}.$ That value of Δm^{2}_{32} is the one- σ low value for AHN 06A. For the AHN 06A best fit value of 2.8×10^{-3} eV², the $\sin^2(2\theta_{13})$ limit is < 0.26. Supersedes AHN 04. 27 AHN 04 searched for $\nu_{\mu} \rightarrow ~\nu_{e}$ appearance. Assuming 2 $\sin^{2}(2~\theta_{\mu_{e}}) = \sin^{2}(2~\theta_{13})$, a limit on $\sin^2(2\,\theta_{\mu_e})$ is converted to a limit on $\sin^2(2\,\theta_{13})$. The quoted limit is for Δm_{32}^2 $=1.9 imes10^{-3}~{ m eV}^2$. That value of Δm_{32}^2 is the one- σ low value for ALIU 05. For the ALIU 05 best fit value of $2.8 \times 10^{-3} \text{ eV}^2$, the $\sin^2(2 \theta_{13})$ limit is < 0.30. ²⁸ The quoted limit is for $\Delta m_{32}^2 = 1.9 \times 10^{-3} \text{ eV}^2$. That value of Δm_{32}^2 is the 1- σ low value for ALIU 05. For the ALIU 05 best fit value of 2.8×10^{-3} eV², the sin²2 θ_{13} limit is < 0.19. In this range, the θ_{13} limit is larger for lower values of $\Delta m^2_{32},$ and smaller for higher values of Δm_{32}^2 . ²⁹ The quoted limit is for $\Delta m^2_{32}=1.9\times 10^{-3}~{\rm eV}^2$. That value of Δm^2_{32} is the 1- σ low value for ALIU 05. For the ALIU 05 best fit value of $2.8\times 10^{-3}~{\rm eV}^2$, the $\sin^2 2\theta_{13}$ ³⁰ The quoted limit is for $\Delta m_{32}^2 = 2.43 \times 10^{-3} \text{ eV}^2$. That value of Δm_{32}^2 is the central value for ADAMSON 08. For the ADAMSON 08 1- σ low value of $2.30 \times 10^{-3}~\text{eV}^2$, the $\sin^2\!2\,\theta_{13}$ limit is < 0.16. See also APOLLONIO 03 for a detailed description of the experiment. # (C) Other neutrino mixing results The LSND collaboration reported in AGUILAR 01 a signal which is consistent with $\overline{ u}_{\mu} ightarrow \overline{ u}_{e}$ oscillations. In a three neutrino framework, this would be a measurement of $heta_{12}$ and Δm_{21}^2 . This does not appear to be consistent with the interpretation of other neutrino data. The MiniBooNE experiment, reported in AGUILAR-AREVALO 07, does a two-neutrino analysis which, assuming CPT conservation, rules out AGUILAR 01. The following listings include results which might be relevant towards understanding these observations. They include searches for $\nu_{\mu} o \; \nu_{e}, \; \overline{\nu}_{\mu} o \; \overline{\nu}_{e}, \; {\rm sterile}$ neutrino oscillations, and CPT violation. ### $\Delta(m^2)$ for $\sin^2(2\theta) = 1$ $(\nu_{\mu} \rightarrow \nu_{e})$ | | | | - 1 | | | | | |----------|-----------|-----------|-----------|------------------------|---------|-----------|--| | VALUE (e | V^2) | | CL%_ | DOCUMENT ID | | TECN | COMMENT | | • • • W | /e do not | use the f | following | data for averages | , fits, | limits, e | tc. • • • | | < 0.34 | | g | 90 | ¹ MAHN | 12 | мвоо | MiniBooNE/SciBooNE | | < 0.034 | | Q | 90 | AGUILAR-AR | . 07 | MBOO | MiniBooNE | | < 0.000 | 8 | g | 90 | AHN | 04 | K2K | Water Cherenkov | | < 0.4 | | g | 90 | ASTIER | 03 | NOMD | CERN SPS | | < 2.4 | | Q | 90 | AVVAKUMOV | 02 | NTEV | NUTEV FNAL | | | | | | ² AGUILAR | 01 | LSND | $ u \mu \rightarrow \nu_e \text{ osc.prob.}$ | | 0.03 | to 0.3 | Q | 95 | ³ ATHANASSO | .98 | LSND | $ u_{\mu} ightarrow u_{e}$ | | < 2.3 | | g | 90 | ⁴ LOVERRE | 96 | | CHARM/CDHS | | < 0.9 | | g | 90 | VILAIN | 94C | CHM2 | CERN SPS | | < 0.09 | | g | 90 | ANGELINI | 86 | HLBC | BEBC CERN PS | | | | | | | | | | NODE=S067T13;LINKAGE=A2 NODE=S067T13;LINKAGE=WE NODE=S067T13;LINKAGE=AD NODE=S067T13;LINKAGE=AM NODE=S067T13;LINKAGE=FO NODE=S067T13;LINKAGE=FG NODE=S067T13;LINKAGE=FL NODE=S067T13;LINKAGE=YA NODE=S067T13;LINKAGE=AH NODE=S067T13;LINKAGE=BH NODE=S067T13;LINKAGE=BO NODE=S067T13;LINKAGE=AP NODE=S067270 NODE=S067270 NODE=S067D1 NODE=S067D1 $^{ m 1}$ MAHN 12 is a combined spectral fit of MiniBooNE and SciBooNE neutrino data with the range of Δm^2 up to 25 eV². The best limit is 0.04 at 7 eV². 2 AGUILAR 01 is the final analysis of the LSND full data set. Search is made for the $u_{\mu} ightarrow \ u_{e}$ oscillations using u_{μ} from π^{+} decay in flight by observing beam-on electron events from $\nu_e {\rm C} \rightarrow e^- X$. Present analysis results in $8.1 \pm 12.2 \pm 1.7$ excess events in the $60 < E_e < 200$ MeV energy range, corresponding to oscillation probability of $0.10 \pm 0.16 \pm 0.04\%$. This is consistent, though less significant, with the previous result of ATHANASSOPOULOS 98, which it supersedes. The present analysis uses selection criteria developed for the decay at rest region, and is less effective in removing the background above 60 MeV than ATHANASSOPOULOS 98. 3 ATHANASSOPOULOS 98 is a search for the $\nu_{\mu} \to ~\nu_{e}$ oscillations using ν_{μ} from π^+ decay in flight. The 40 observed beam-on electron events are consistent with ν_e C \rightarrow e^- X; the expected background is 21.9 \pm 2.1. Authors interpret this excess as evidence for an oscillation signal corresponding to oscillations with probability (0.26 \pm 0.10 \pm 0.05)%. Although the significance is only 2.3 σ , this measurement is an important and consistent cross check of ATHANASSOPOULOS 96 who reported evidence for $\overline{\nu}_{\mu} \to \ \overline{\nu}_{\it e}$ oscillations from μ^+ decay at rest. See also ATHANASSOPOULOS 98B. ⁴LOVERRE 96 uses the charged-current to neutral-current ratio from the combined CHARM (ALLABY 86) and CDHS (ABRAMOWICZ 86) data from 1986. NODE=S067D1;LINKAGE=MA NODE=S067D1;LINKAGE=AG NODE=S067D1;LINKAGE=F1 NODE=S067D1:LINKAGE=LV NODE=S067S1 NODE=S067S1 # $\sin^2(2\theta)$ for "Large" $\Delta(m^2)$ $(u_{\mu} ightarrow u_{e})$ | VALU | E (units 10 °) | <u>CL%</u> | DOCUMENT ID | | TECN | COMMENT | |-------|---------------------|------------|-------------------------|---------|-----------|--| | • • • | • We do not use the | following | data for averages | , fits, | limits, e | tc. • • • | | <10 | 0 | 90 | | 12 | мвоо | MiniBooNE/SciBooNE | | < | 1.8 | 90 | ² AGUILAR-AR | .07 | MBOO | MiniBooNE | | <11 | 0 | 90 | ³ AHN | 04 | K2K | Water Cherenkov | | < | 1.4 | 90 | ASTIER | 03 | NOMD | CERN SPS | | < | 1.6 | 90 | AVVAKUMOV | 02 | NTEV | NUTEV FNAL | | | | | ⁴ AGUILAR | 01 | LSND | $ u\mu ightarrow \ u_{e} \ { m osc.prob}.$ | | | 0.5 to 30 | 95 | ⁵ ATHANASSO | .98 | | $ u_{\mu} \rightarrow \nu_{e} $ | | < | 3.0 | 90 | ⁶ LOVERRE | 96 | | CHARM/CDHS | | < | 9.4 | 90 | VILAIN | 94C | CHM2 | CERN SPS | | < | 5.6 | 90 | ⁷ VILAIN | 94C | CHM2 | CERN SPS | 1 MAHN 12 is a combined fit of MiniBooNE and SciBooNE neutrino data. 2 The limit is $\sin^2\!2\theta~<~0.9\times10^{-3}$ at $\Delta m^2=2~{\rm eV}^2$. That value of Δm^2 corresponds to the smallest mixing angle consistent with the reported signal from LSND in AGUILAR 01. 3 The limit becomes $\sin^2 2\theta < 0.15$ at $\Delta m^2 = 2.8 \times 10^{-3}$ eV², the bets-fit value of the # $\Delta(\mathit{m}^2) \text{ for } \sin^2(2\theta) = 1 \hspace{0.5cm} (\overline{\nu}_{\mu} \rightarrow \hspace{0.5cm} \overline{\nu}_{e})$ | VALUE (eV ²) | CL% | DOCUMENT ID | | TECN | COMMENT | | |---------------------------------|-----------|-------------------------|-------------|-----------|-----------------------------|--| | ullet $ullet$ We do not use the | following | data for averages, | fits, | limits, e | tc. • • • | | | < 0.16 | 90 | | 12 | МВОО | MiniBooNE/SciBooNE | | | 0.03-0.09 | 90 | ² AGUILAR-AR | 10 | MBOO | $E_{ u} > 475\;MeV$ | | | 0.03-0.07 | 90 | ³ AGUILAR-AR | 10 | MBOO | $E_{\nu} > 200 \text{ MeV}$ | | | < 0.06 | 90 | AGUILAR-AR | 09 B | | MiniBooNE | | | < 0.055 | 90 | ⁴ ARMBRUSTER | 202 | KAR2 | Liquid Sci. calor. | | | < 2.6 | 90 | AVVAKUMOV | 02 | NTEV | NUTEV FNAL | | | 0.03-0.05 | | | 01 | LSND | LAMPF | | | 0.05-0.08 | 90 | ⁶ ATHANASSO | .96 | LSND | LAMPF | | | 0.048-0.090 | 80 | ⁷ ATHANASSO | .95 | | | | | < 0.07 | 90 | ⁸ HILL | 95 | | | | | < 0.9 | 90 | VILAIN | 94 C | CHM2 | CERN
SPS | | | < 0.14 | 90 | ⁹ FREEDMAN | 93 | CNTR | LAMPF | | | | | | | | | | #### OCCUR=2 NODE=S067S1;LINKAGE=MA NODE=S067S1;LINKAGE=AI NODE=S067S1;LINKAGE=AH NODE=S067S1;LINKAGE=AG NODE=S067S1;LINKAGE=F1 NODE=S067S1;LINKAGE=LV NODE=S067S1;LINKAGE=E NODE=S067D2 NODE=S067D2 OCCUR=2 OCCUR=2 $[\]nu_{\mu}$ disappearance analysis in K2K. $^{^4}$ AGUILAR 01 is the final analysis of the LSND full data set of the search for the ν_{μ} \rightarrow $\boldsymbol{\nu_e}$ oscillations. See footnote in preceding table for further details. $^{^{5}}$ ATHANASSOPOULOS 98 report (0.26 \pm 0.10 \pm 0.05)% for the oscillation probability; the value of $\sin^2 2\theta$ for large Δm^2 is deduced from this probability. See footnote in preceding table for further details, and see the paper for a plot showing allowed regions. If effect is due to oscillation, it is most likely to be intermediate $\sin^2 2\theta$ and Δm^2 . See also ATHANASSOPOULOS 98B. ⁶LOVERRE 96 uses the charged-current to neutral-current ratio from the combined CHARM (ALLABY 86) and CDHS (ABRAMOWICZ 86) data from 1986. $^{^7}$ VILAIN 94C limit derived by combining the u_μ and $\overline{ u}_\mu$ data assuming *CP* conservation. ¹CHENG 12 is a combined fit of MiniBooNE and SciBooNE antineutrino data. 2 This value is for a two neutrino oscillation analysis for excess antineutrino events with E $_{\nu}>$ 475 MeV. The best fit is at 0.07. The allowed region is consistent with LSND reported by AGUILAR 01. Supercedes AGUILAR-AREVALO 09B. ⁴ ARMBRUSTER 02 is the final analysis of the KARMEN 2 data for 17.7 m distance from the ISIS stopped pion and muon neutrino source. It is a search for $\overline{\nu}_e$, detected by the inverse β-decay reaction on protons and 12 C. 15 candidate events are observed, and $^{15.8} \pm 0.5$ background events are expected, hence no oscillation signal is detected. The results exclude large regions of the parameter area favored by the LSND experiment. ⁵ AGUILAR 01 is the final analysis of the LSND full data set. It is a search for $\overline{\nu}_e$ 30 m from LAMPF beam stop. Neutrinos originate mainly for π^+ decay at rest. $\overline{\nu}_e$ are detected through $\overline{\nu}_e \, p \to e^+ \, n$ (20< $E_{e^+} <$ 60 MeV) in delayed coincidence with $np \to d \, \gamma$. Authors observe 87.9 \pm 22.4 \pm 6.0 total excess events. The observation is attributed to $\overline{\nu}_\mu \to \overline{\nu}_e$ oscillations with the oscillation probability of 0.264 \pm 0.067 \pm 0.045%, consistent with the previously published result. Taking into account all constraints, the most favored allowed region of oscillation parameters is a band of $\Delta(m^2)$ from 0.2–2.0 eV². Supersedes ATHANASSOPOULOS 95, ATHANASSOPOULOS 96, and ATHANASSOPOULOS 98. ATHANASSOPOULOS 98. 6 ATHANASSOPOULOS 96 is a search for $\overline{\nu}_e$ 30 m from LAMPF beam stop. Neutrinos originate mainly from π^+ decay at rest. $\overline{\nu}_e$ could come from either $\overline{\nu}_\mu \to \overline{\nu}_e$ or $\nu_e \to \overline{\nu}_e$; our entry assumes the first interpretation. They are detected through $\overline{\nu}_e p \to e^+ n$ (20 MeV $<\!E_{e^+}<\!60$ MeV) in delayed coincidence with $np \to d\gamma$. Authors observe 51 \pm 20 \pm 8 total excess events over an estimated background 12.5 \pm 2.9. ATHANASSOPOULOS 96B is a shorter version of this paper. 7 ATHANASSOPOULOS 95 error corresponds to the 1.6σ band in the plot. The expected background is 2.7 ± 0.4 events. Corresponds to an oscillation probability of $(0.34^{+0.20}_{-0.18}\pm0.07)\%$. For a different interpretation, see HILL 95. Replaced by ATHANASSOPOULOS 96. 8 HILL 95 is a report by one member of the LSND Collaboration, reporting a different conclusion from the analysis of the data of this experiment (see ATHANASSOPOULOS 95). Contrary to the rest of the LSND Collaboration, Hill finds no evidence for the neutrino oscillation $\overline{\nu}_{\mu} \rightarrow \ \overline{\nu}_{e}$ and obtains only upper limits. 9 FREEDMAN 93 is a search at LAMPF for $\overline{\nu}_e$ generated from any of the three neutrino types $\nu_\mu,\,\overline{\nu}_\mu,\,$ and ν_e which come from the beam stop. The $\overline{\nu}_e$'s would be detected by the reaction $\overline{\nu}_e\,p\,\rightarrow\,\,e^+\,n.$ FREEDMAN 93 replaces DURKIN 88. # $\sin^2(2\theta)$ for "Large" $\Delta(m^2)$ $(\overline{ u}_{\mu} \to \overline{ u}_{e})$ | | ` ' | • | , | ` <i>p</i> | e / | | | |-----|-------------------------------------|----------------|--------|----------------------|--------------|-----------|-----------------------------| | VAL | <i>UE</i> (units 10 ⁻³) | CL% | | DOCUMENT | - ID | TECN | COMMENT | | • • | • We do not | use the follow | wing c | lata for ave | rages, fits, | limits, e | tc. • • • | | <1 | 50 | 90 | | L CHENG | 12 | МВОО | MiniBooNE/SciBooNE | | 0 | .4-9.0 | 99 | 2 | 2 AGUILAR | AR10 | MBOO | $E_{\nu} > 475 \text{ MeV}$ | | 0 | .4-9.0 | 99 | 3 | BAGUILAR | AR10 | | $E_{\nu} > 200 \text{ MeV}$ | | < | 3.3 | 90 | 4 | ^Į AGUILAR | AR09B | MBOO | MiniBooNE | | < | 1.7 | 90 | į | ARMBRU | STER02 | KAR2 | Liquid Sci. calor. | | < | 1.1 | 90 | | AVVAKUN | /IOV 02 | NTEV | NUTEV FNAL | | | $5.3 \pm 1.3 \pm 9.6$ | 0 | | GAGUILAR | | | LAMPF | | | $6.2 \pm 2.4 \pm 1.6$ | 0 | | ⁷ ATHANAS | | LSND | LAMPF | | 3-1 | 2 | 80 | | 3 ATHANAS | SSO95 | | | | < | 6 | 90 | ć | HILL | 95 | | | ¹CHENG 12 is a combined fit of MiniBooNE and SciBooNE antineutrino data. 2 This value is for a two neutrino oscillation analysis for excess antineutrino events with E $_{\nu}>475$ MeV. At 90% CL there is no solution at high $\Delta(m^2)$. The best fit is at maximal mixing. The allowed region is consistent with LSND reported by AGUILAR 01. Supercedes AGUILAR-AREVALO 09B. 3 This value is for a two neutrino oscillation analysis for excess antineutrino events with E $_{\nu} >$ 200 MeV with subtraction of the expected 12 events low energy excess seen in the neutrino component of the beam. At 90% CL there is no solution at high $\Delta(m^2)$. The best fit value is 0.007 for $\Delta(m^2) =$ 4.4 eV 2 . $^4\,\mathrm{This}$ result is inconclusive with respect to small amplitude mixing suggested by LSND. ⁵ARMBRUSTER 02 is the final analysis of the KARMEN 2 data. See footnote in the preceding table for further details, and the paper for the exclusion plot. 6 AGUILAR 01 is the final analysis of the LSND full data set. The deduced oscillation probability is $0.264 \pm 0.067 \pm 0.045\%$; the value of $\sin^2\!2\theta$ for large $\Delta(m^2)$ is twice this probability (although these values are excluded by other constraints). See footnote in preceding table for further details, and the paper for a plot showing allowed regions. Supersedes ATHANASSOPOULOS 95, ATHANASSOPOULOS 96, and ATHANASSOPOULOS 98. NODE=S067D2;LINKAGE=CH NODE=S067D2;LINKAGE=AI NODE=S067D2;LINKAGE=AL NODE=S067D2;LINKAGE=BR NODE=S067D2;LINKAGE=AG NODE=S067D2;LINKAGE=AK NODE=S067D2;LINKAGE=C NODE=S067D2;LINKAGE=D NODE=S067D2;LINKAGE=B NODE=S067S2 NODE=S067S2 OCCUR=2 ı OCCUR=2 NODE=S067S2;LINKAGE=CH NODE=S067S2;LINKAGE=AI ${\sf NODE}{=}{\sf S067S2;} {\sf LINKAGE}{=}{\sf AL}$ NODE=S067S2;LINKAGE=AU NODE=S067S2;LINKAGE=BR NODE=S067S2;LINKAGE=AG | 7 ATHANASSOPO | PULOS 96 reports (0.31) 2θ for large $\Delta(m^2)$ show further details, and see | $\pm~0.12\pm0.05$)% for the oscillation probability ould be twice this probability. See footnote in the paper for a plot showing allowed regions | ; NODE=S067S2;LINKAGE=AK | |---|---|--|------------------------------| | ⁸ ATHANASSOP(
pected backgrou | ULOS 95 error correspond is 2.7 \pm 0.4 events | onds to the 1.6σ band in the plot. The ex-
Corresponds to an oscillation probability of | NODE=S067S2;LINKAGE=C | | ATHANASSOPO
9 HILL 95 is a repo
clusion from the
Contrary to the | ULOS 96.
rt by one member of the
analysis of the data of th | t interpretation, see HILL 95. Replaced by LSND Collaboration, reporting a different consist experiment (see ATHANASSOPOULOS 95) oration, Hill finds no evidence for the neutrino oper limits. | NODE=S067S2;LINKAGE=D | | , | $(\overline{ u}_{\mu}) = 1 (u_{\mu}(\overline{ u}_{\mu}) - \overline{ u}_{\mu})$ | | NODE=S067D13 | | <i>VALUE</i> (eV ²) | CL%DOCUM | ENT ID TECN COMMENT | NODE=S067D13 | | <0.075 | | DOV 92 CNTR BNL E776 | | | | | averages, fits, limits, etc. • • • | | | <1.6 | 90 ¹ ROMO | | | | ¹ ROMOSAN 97 ι | ses wideband beam witl | n a 0.5 km decay region. | NODE=S067D13;LINKAGE=B | | $\sin^2(2\theta)$ for "Large | e" $\Delta(m^2)$ $(u_{\mu}(\overline{ u}_{\mu})$ | $) \rightarrow \nu_{\mathbf{e}}(\overline{\nu}_{\mathbf{e}}))$ | NODE (007012 | | VALUE (units 10^{-3}) | CL% DOCUM | | NODE=S067S13
NODE=S067S13 | | <1.8 | 90 1 ROMO | | - | | • • • We do not us | the following data for | averages, fits, limits, etc. • • • | | | <3.8 | 90 ² MCFAF | RLAND 95 CCFR FNAL | | | <3 | 90 BORO | DOV 92 CNTR BNL E776 | | | LOS 96. $\Delta(m^2) \text{ for } \sin^2(2)$ VALUE (eV ²) | $(\overline{\nu}_e \not\rightarrow \overline{\nu}_e)$ | ENT ID TECN COMMENT | NODE=S067RD1
NODE=S067RD1 | | | | averages, fits, limits, etc. • • | - | | <0.01 | 90 ¹ ACHKA | | | | | and is for $L=15$, 40, and | 6 7 | NODE=S067RD1;LINKAGE=AC | | | _ | | NODE_3007 KD1,ENNAGE_AC | | $sin^2(2\theta)$ for "Large VALUE" | e" Δ(<i>m</i> ²) (ν̄ _e ↔ ν̄
<u>CL%</u> <u>DOCUM</u> | -, | NODE=S067RS1
NODE=S067RS1 | | • • • We do not us | the following data for | averages, fits, limits, etc. • • • | | | < 0.02 | 90 ¹ ACHK | AR 95 CNTR For $\Delta(m^2) = 0.6 \text{ eV}^2$ | | | ¹ ACHKAR 95 bou | nd
is from data for $L{=}15$ | , 40, and 95 m distance from the Bugey reactor | NODE=S067RS1;LINKAGE=AC | | Sterile | neutrino limits from | atmospheric neutrino studies ——— | NODE=S067STL | | $\Delta(m^2)$ for $\sin^2(2)$ | $\theta) = 1 \left(\nu_{\mu} \rightarrow \nu_{s} \right)$ | | | | | or any sterile (noninterac | ting) v | NODE=S067DU4 | | | CL% DOCUMENT I | | NODE=S067DU4
NODE=S067DU4 | | | | averages, fits, limits, etc. • • • | - | | <3000 (or <550)
< 4.2 or > 54. | 90 ¹ OYAMA
90 BIONTA | 89 KAMI Water Cherenkov
88 IMB Flux has ν_{μ} , $\overline{\nu}_{\mu}$, ν_{e} , and $\overline{\nu}_{e}$ | | | ¹ OYAMA 89 give | s a range of limits, dep | ending on assumptions in their analysis. They $000) \times 10^{-5} \text{ eV}^2$ is not ruled out by any data | / NODE=S067DU4;LINKAGE=A | | Search for $ u_{\mu}$ $ ightarrow$ | | TECH COMMENT | NODE=S067NUS | | VALUE | | TECN COMMENT | NODE=S067NUS | | ■ ■ • vve do not us | the following data for 1 AMBROSIO | averages, fits, limits, etc. • • | | | | ² FUKUDA | 01 MCRO matter effects
00 SKAM neutral currents + matter ef- | | 1 AMBROSIO 01 tested the pure 2-flavor $u_{\mu} ightarrow \, u_{ m S}$ hypothesis using matter effects which change the shape of the zenith-angle distribution of upward through-going muons. With maximum mixing and $\Delta(m^2)$ around 0.0024 eV 2 , the $u_{\mu} ightarrow u_{s}$ oscillation is disfavored with 99% confidence level with respect to the ν_{μ} — ν_{τ} hypothesis. 2 FUKUDA 00 tested the pure 2-flavor $\nu_{\mu} \rightarrow \nu_{s}$ hypothesis using three complementary atmospheric-neutrino data samples. With this hypothesis, zenith-angle distributions are expected to show characteristic behavior due to neutral currents and matter effects. In the $\Delta(m^2)$ and $\sin^2 2\theta$ region preferred by the Super-Kamiokande data, the u_{μ} ightarrow $u_{\rm S}$ hypothesis is rejected at the 99% confidence level, while the $u_{\mu} ightarrow \ u_{ au}$ hypothesis consistently fits all of the data sample. NODE=S067NUS;LINKAGE=AB NODE=S067NUS;LINKAGE=FU CPT tests - NODE=S067EXO $\langle \Delta m_{21}^2 - \Delta \overline{m}_{21}^2 \rangle$ $VALUE (10^{-4} \text{ eV}^2)$ CL% DOCUMENT ID TECN COMMENT NODE=S067CPT NODE=S067CPT ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet 99 7 ¹ DEGOUVEA 05 FIT 1 DEGOUVEA 05 obtained this bound at the 3σ CL from the KamLAND (ARAKI 05) and solar neutrino data. NODE=S067CPT;LINKAGE=DE $\langle \Delta m_{32}^2 - \Delta \overline{m}_{32}^2 \rangle$ $VALUE (10^{-3} \text{ eV}^2)$ CL% DOCUMENT ID ______TECN___COMMENT NODE=S067CP2 NODE=S067CP2 ullet ullet We do not use the following data for averages, fits, limits, etc. ullet $0.6^{+2.4}_{-0.8}$ ¹ ADAMSON 12B MINS MINOS atmospheric $^1\,\text{The}$ quoted result is the single-parameter 90% C.L. interval determined from the 90% C.L. contour in the $(\Delta m^2, \Delta \overline{m}^2)$ plane, which is obtained by minimizing the four parameter log-likelihood function with respect to the other oscillation parameters. NODE=S067CP2:LINKAGE=AD #### **REFERENCES FOR Neutrino Mixing** | AN | 13 | CP C37 011001 | F.P. An et al. | (Daya Bay C | | |----------------------|--------------|----------------------------------|--|-------------------------|----------| | Also | | CP C37 011001 (errat) | F.P. An et al. | (Daya Bay C | | | ABE | 12 | PRL 108 131801 | Y. Abe et al. | (Double Chooz C | | | ABE | 12A | PR D85 031103 | K. Abe et al. | (T2K C | , | | ABE | 12B | PR D86 052008 | Y. Abe et al. | (Double Chooz C | | | ADAMSON | 12 | PRL 108 191801 | P. Adamson et al. | (MINOS C | | | ADAMSON | 12B | PR D86 052007 | P. Adamson et al. | (MINOS C | | | ADRIAN-MAR. | | PL B714 224 | S. Adrian-Martinez et al. | (ANTARES C | | | AHN | 12 | PRL 108 191802 | J.K. Ahn et al. | (RENO C | | | AN | 12 | PRL 108 171803 | F.P. An et al. | (Daya Bay C | | | Also | | CP C37 011001 (errat) | F.P. An et al. | (Daya Bay C | | | BELLINI | 12A | PRL 108 051302 | G. Bellini et al. | (Borexino C | | | CHENG | 12 | PR D86 052009 | | (MiniBooNE/SciBooNE C | | | MAHN | 12 | PR D85 032007 | | (MiniBooNE/SciBooNE C | | | ABE | 11 | PR D83 052010 | K. Abe et al. | (Super-Kamiokande C | | | ABE | 11A | PRL 107 041801 | K. Abe et al. | (T2K C | | | ABE | 11B | PR C84 035804 | S. Abe et al. | (KamLAND C | , | | ABE | 11C | PRL 107 241801 | K. Abe et al. | (Super-Kamiokande C | | | ADAMSON | 11 | PRL 106 181801 | P. Adamson et al. | (MINOS C | | | ADAMSON | 11B | PRL 107 021801 | P. Adamson et al. | (MINOS C | | | ADAMSON | 11C | PR D84 071103 | P. Adamson et al. | (MINOS C | | | ADAMSON | 11D | PRL 107 181802 | P. Adamson et al. | (MINOS C | | | BELLINI | 11 | PL B696 191 | G. Bellini et al. | (Borexino C | , | | BELLINI | 11A | PRL 107 141302 | G. Bellini et al. | (Borexino C | Collab.) | | FOGLI | 11 | PR D84 053007 | G.L. Fogli et al. | | | | GANDO | 11 | PR D83 052002 | A. Gando et al. | (KamLAND C | Lollab.) | | MUELLER | 11 | PR C83 054615 | Th.A Mueller et al. | | | | SERENELLI | 11 | APJ 743 24 | A.M. Serenelli, W.C. Haxte | | | | ADAMSON | 10A | PR D82 051102 | P. Adamson et al. | (MINOS C | | | AGUILAR-AR | | PRL 105 181801 | A.A. Aguillar-Arevalo et al | | | | AHARMIM | 10 | PR C81 055504 | B. Aharmim et al. | (SNO C | | | BELLINI | 10A | PR D82 033006 | G. Bellini et al. | (Borexino C | | | DENIZ | 10 | PR D81 072001 | M. Deniz et al. | (TEXONO C | _ollab.) | | KAETHER | 10 | PL B685 47 | F. Kaether <i>et al.</i> | (6 1/ : 1 1 6 | ~ !! ! \ | | WENDELL | 10 | PR D81 092004 | R. Wendell et al. | (Super-Kamiokande C | | | ABDURASHI | | PR C80 015807 | J.N. Abdurashitov et al. | (SAGE C | | | ADAMSON | 09 | PRL 103 261802 | P. Adamson et al. | (MINOS C | | | AGUILAR-AR
ABE | . 09B
08A | PRL 103 111801
PRL 100 221803 | A.A. Aguilar-arevalo et al. | (MiniBooNE (| | | | UOA | | S. Abe et al. | (KamLAND (| | | Also
ADAMSON | 08 | PRL 101 119904E
PR D77 072002 | S. Abe <i>et al.</i>
P. Adamson <i>et al.</i> | (KamLAND (
(MINOS (| | | | 08A | PRL 101 131802 | P. Adamson et al. P. Adamson et al. | | | | ADAMSON | 08A | PRL 101 131602
PRL 101 111301 | B. Aharmim <i>et al.</i> | (MINOS C | | | AHARMIM
ARPESELLA | 08A | PRL 101 111301
PRL 101 091302 | C. Arpesella <i>et al.</i> | (SNO C
(Borexino C | | | CRAVENS | 08 | PR D78 032002 | J.P. Cravens <i>et al.</i> | (Super-Kamiokande C | | | FOGLI | 08 | PRL 101 141801 | G.L. Fogli, et al | (Super-Namilokande C | collab.) | | ADAMSON | 07 | PR D75 092003 | P. Adamson et al. | (MINIOS C | Collab) | | AGUILAR-AR | | PRL 98 231801 | A.A. Aguilar-Arevalo et al. | (MINOS (
MiniBooNE (| | | AHARMIM | 07 | PR C75 045502 | B. Aharmim <i>et al.</i> | (SNO C | | | ADAMSON | 06 | PR D73 072002 | P. Adamson et al. | (MINOS C | | | AHN | 06A | PR D73 072002
PR D74 072003 | M.H. Ahn <i>et al.</i> | (WINO3 C | | | BALATA | 06A | EPJ C47 21 | M. Balata et al. | (Borexino C | | | HOSAKA | 06 | PR D73 112001 | J. Hosaka <i>et al.</i> | (Super-Kamiokande C | | | | 50 | 515 112001 | 5. 1.05ana Ct al. | (Super Humonande C | 20.140.) | NODE=S067 REFID=54990 REFID=54993 REFID=54076 REFID=54393 REFID=54607 REFID=54235 REFID=54608 REFID=54202 REFID=54078 REFID=54077 REFID=54993 REFID=54205 REFID=54611 REFID=54394 REFID=16501 REFID=16503 REFID=53789 REFID=53949 REFID=16619 REFID=16655 REFID=53811 REFID=53831 REFID=53605 REFID=53827 REFID=53873 REFID=16507 REFID=53788 REFID=54085 REFID=53483 REFID=53447 REFID=53686 REFID=53374 REFID=53393 REFID=53303 REFID=53345 REFID=53023 REFID=53176 REFID=53026 REFID=52440 REFID=52499 REFID=52341 REFID=52451 REFID=52448 REFID=52447 REFID=52418 REFID=52561 REFID=51794 REFID=51813 REFID=51773 REFID=51461 REFID=51227 REFID=51280 | HOSAKA | 06A | PR D74 032002 | J. Hosaka <i>et al.</i> | (Super-Kamiokande | Collab.) | REFID=51332 | |--|--|---|--|--|--|--| | MICHAEL | 06 | PRL 97 191801 | D. Michael et al. | (MINOS | Collab.) | REFID=51483 | | WINTER | 06A | PR C73 025503 | W.T. Winter et al. | | | REFID=54084 | | YAMAMOTO | 06 | PRL 96 181801 | S. Yamamoto et al. | | Collab.) | REFID=51209 | | AHARMIM | 05A | PR C72 055502 | B. Aharmim et al. | | Collab.) | REFID=50907 | | ALIU | 05 | PRL 94 081802 | E. Aliu et al. | | Collab.) | REFID=50578 | | ALLISON | 05 | PR D72 052005 | W.W.M. Allison et al. | (SOUDAN-2 | | REFID=50904 | | ALTMANN | 05 | PL B616 174 | M. Altmann et al. | | Collab.) | REFID=50612 | | ARAKI | 05 | PRL 94 081801 | T. Araki et al. | (KamLAND | | REFID=50577
REFID=50667 | | ASHIE | 05
05 | PR D71 112005 | Y. Ashie et al. | (Super-Kamiokande | Collab.) | REFID=50007 | | DEGOUVEA
AHARMIM | 03 | PR D71 093002
PR D70 093014 | A. de Gouvea, C. Pena-Gara
B. Aharmim <i>et al.</i> | | Collab.) | REFID=50417 | | AHMED | 04A | PRL 92 181301 | S.N. Ahmed <i>et al.</i> | | Collab.) | REFID=30417 | | AHN | 04/4 | PRL 93 051801 | M.H. Ahn et al. | | Collab.) | REFID=49999 | | AMBROSIO | 04 | EPJ C36 323 | M. Ambrosio <i>et al.</i>
 (MACRO | | REFID=50147 | | ASHIE | 04 | PRL 93 101801 | Y. Ashie et al. | (Super-Kamiokande | | REFID=50075 | | EGUCHI | 04 | PRL 92 071301 | K. Eguchi <i>et al.</i> | (KamLAND | | REFID=49868 | | SMY | 04 | PR D69 011104 | M.B. Smy et al. | (Super-Kamiokande | | REFID=49851 | | AHN | 03 | PRL 90 041801 | M.H. Ahn et al. | | Collab.) | REFID=49351 | | AMBROSIO | 03 | PL B566 35 | M. Ambrosio et al. | (MACRO | | REFID=49490 | | APOLLONIO | 03 | EPJ C27 331 | M. Apollonio et al. | (CHOOZ | | REFID=49377 | | ASTIER | 03 | PL B570 19 | P. Astier et al. | (NOMAD | Collab.) | REFID=49549 | | EGUCHI | 03 | PRL 90 021802 | K. Eguchi et al. | (KamLAND | Collab.) | REFID=49194 | | GANDO | 03 | PRL 90 171302 | Y. Gando <i>et al.</i> | (Super-Kamiokande | Collab.) | REFID=49358 | | IANNI | 03 | JPG 29 2107 | A. lanni | (INFN Gran | n Sasso) | REFID=49785 | | SANCHEZ | 03 | PR D68 113004 | M. Sanchez et al. | (Soudan 2 | Collab.) | REFID=49848 | | ABDURASHI | . 02 | JETP 95 181 | J.N. Abdurashitov et al. | (SAGE | Collab.) | REFID=48861 | | ALIMAAD | 00 | Translated from ZETF 1 | | (CNO | C \ | DEEID 40640 | | AHMAD | 02 | PRL 89 011301 | Q.R. Ahmad et al. | | Collab.) | REFID=48642 | | AHMAD | 02B | PRL 89 011302 | Q.R. Ahmad et al. | | Collab.) | REFID=48643 | | ARMBRUSTER | | PR D65 112001
PRL 89 011804 | B. Armbruster <i>et al.</i>
S. Avvakumov <i>et al.</i> | (KARMEN 2 | | REFID=48800
REFID=48752 | | AVVAKUMOV
FUKUDA | 02 | PL B539 179 | | (NuTeV
(Super-Kamiokande | | REFID=48772 | | | | PR D64 112007 | S. Fukuda <i>et al.</i> | | | REFID=48466 | | AGUILAR
AHMAD | 01 | | A. Aguilar <i>et al.</i>
Q.R. Ahmad <i>et al.</i> | (LSND | | REFID=48169 | | AMBROSIO | 01
01 | PRL 87 071301
PL B517 59 | M. Ambrosio <i>et al.</i> | | Collab.) | REFID=48109
REFID=48286 | | BOEHM | 01 | PR D64 112001 | F. Boehm <i>et al.</i> | (MACRO | Collab.) | REFID=48422 | | FUKUDA | 01 | PRL 86 5651 | S. Fukuda <i>et al.</i> | (Super-Kamiokande | Collab) | REFID=48170 | | AMBROSIO | 00 | PL B478 5 | M. Ambrosio <i>et al.</i> | (MACRO | | REFID=47605 | | BOEHM | 00 | PRL 84 3764 | F. Boehm <i>et al.</i> | (WACKO | Collab.) | REFID=47511 | | FUKUDA | 00 | PRL 85 3999 | S. Fukuda <i>et al.</i> | (Super-Kamiokande | Collab) | REFID=47800 | | ALLISON | 99 | PL B449 137 | W.W.M. Allison et al. | (Soudan 2 | | REFID=46989 | | APOLLONIO | 99 | PL B466 415 | M. Apollonio et al. | (CHOOZ | | REFID=47255 | | Also | | PL B472 434 (errat) | M. Apollonio et al. | CHOOZ | | REFID=47575 | | FUKUDA | 99C | PRL 82 2644 | Y. Fukuda <i>et al.</i> | (Super-Kamiokande | | REFID=46983 | | FUKUDA | 99D | PL B467 185 | Y. Fukuda et al. | (Super-Kamiokande | | REFID=47296 | | HAMPEL | 99 | PL B447 127 | W. Hampel et al. | ` (GALLEX | | REFID=46715 | | AMBROSIO | 98 | PL B434 451 | M. Ambrosio et al. | (MACRO | Collab.) | REFID=46135 | | APOLLONIO | 98 | PL B420 397 | M. Apollonio et al. | (CHOOZ | Collab.) | REFID=45866 | | ATHANASSO | . 98 | PRL 81 1774 | C. Athanassopoulos et al. | ` (LSND | | REFID=46115 | | ATHANASSO | . 98B | PR C58 2489 | C. Athanassopoulos et al. | (LSND | Collab.) | REFID=46470 | | CLEVELAND | 98 | APJ 496 505 | B.T. Cleveland et al. | (Homestake | Collab.) | REFID=46817 | | FELDMAN | 98 | PR D57 3873 | G.J. Feldman, R.D. Cousins | | | REFID=46776 | | FUKUDA | 98C | PRL 81 1562 | Y. Fukuda <i>et al.</i> | (Super-Kamiokande | | REFID=46097 | | HATAKEYAMA | | PRL 81 2016 | S. Hatakeyama et al. | (Kamiokande | | REFID=46118 | | CLARK | 97 | PRL 79 345 | R. Clark et al. | | Collab.) | REFID=45438 | | ROMOSAN | 97 | PRL 78 2912 | A. Romosan et al. | (CCFR | | REFID=45302 | | AGLIETTA | 96 | JETPL 63 791 | M. Aglietta <i>et al.</i> | (LSD | Collab.) | REFID=45180 | | ATHANASSO | 96 | Translated from ZETFP
PR C54 2685 | C. Athanassopoulos <i>et al.</i> | (LSND | Collab.) | REFID=44727 | | ATHANASSO | | PRL 77 3082 | C. Athanassopoulos <i>et al.</i> | (LSND | | REFID=44930 | | FUKUDA | 96 | PRL 77 1683 | Y. Fukuda <i>et al.</i> | (Kamiokande | | REFID=45354 | | FUKUDA | 96B | PL B388 397 | Y. Fukuda <i>et al.</i> | (Kamiokande | | REFID=45355 | | GREENWOOD | | PR D53 6054 | Z.D. Greenwood et al. | (UCI, SVR, | scuci | REFID=44787 | | HAMPEL | 96 | PL B388 384 | W. Hampel et al. | (GALLEX | | REFID=45049 | | LOVERRE | 96 | PL B370 156 | P.F. Loverre | , | , | REFID=44838 | | ACHKAR | 95 | NP B434 503 | B. Achkar et al. (SIN | G, SACLD, CPPM, (| CDEF+) | REFID=44111 | | AHLEN | 95 | PL B357 481 | S.P. Ahlen et al. | (MACRO | | REFID=44571 | | ATHANASSO | | PRL 75 2650 | C. Athanassopoulos et al. | (LSND | | REFID=44484 | | DAUM | 95 | ZPHY C66 417 | K. Daum et al. | (FREJUS | | REFID=44263 | | HILL | 95 | PRL 75 2654 | J.E. Hill | | (PENN) | REFID=44485 | | MCFARLAND | 95 | PRL 75 3993 | K.S. McFarland et al. | (CCFR | Collab.) | REFID=44577 | | DECLAIS | 94 | PL B338 383 | Y. Declais <i>et al.</i>
Y. Fukuda <i>et al.</i> | (1/ | Callab) | REFID=45908
REFID=44037 | | FUKUDA
VILAIN | 94
94C | PL B335 237
ZPHY C64 539 | P. Vilain <i>et al.</i> | (Kamiokande
(CHARM II | | REFID=44154 | | FREEDMAN | 93 | PR D47 811 | S.J. Freedman <i>et al.</i> | (LAMPF E645 | | REFID=43372 | | BECKER-SZ | 92B | PR D46 3720 | R.A. Becker-Szendy et al. | | Collab.) | REFID=43686 | | BEIER | 92 | PL B283 446 | E.W. Beier et al. | (KAM2 | | REFID=42052 | | Also | - | PTRSL A346 63 | E.W. Beier, E.D. Frank | | (PENN) | REFID=43733 | | BORODOV | 92 | PRL 68 274 | L. Borodovsky et al. | (COLU, JF | | REFID=41960 | | HIRATA | 92 | PL B280 146 | K.S. Hirata et al. | (Kamiokande II | | REFID=42021 | | CASPER | 91 | PRL 66 2561 | D. Casper et al. | | Collab.) | REFID=41705 | | HIRATA | 91 | PRL 66 9 | K.S. Hirata et al. | (Kamiokande II | | REFID=41402 | | KUVSHINN | 91 | JETPL 54 253 | A.A. Kuvshinnikov et al. | | (KIAE) | REFID=45966 | | BERGER | 90B | PL B245 305 | C. Berger et al. | (FREJUS | | REFID=41330 | | HIRATA | 00 | PRL 65 1297 | K.S. Hirata et al. | (Kamiokande II | | REFID=41590 | | | 90 | | | /EDE IIIC | (- II - I-) | | | AGLIETTA | 89 | EPL 8 611 | M. Aglietta et al. | (FREJUS | | REFID=40866 | | DAVIS | 89
89 | ARNPS 39 467 | R. Davis, A.K. Mann, L. Wo | olfenstein (BNL, F | PENN+) | REFID=40903 | | DAVIS
OYAMA | 89
89
89 | ARNPS 39 467
PR D39 1481 | R. Davis, A.K. Mann, L. Wo
Y. Oyama <i>et al.</i> | olfenstein (BNL, F
(Kamiokande II | PENN+)
Collab.) | REFID=40903
REFID=40836 | | DAVIS
OYAMA
BIONTA | 89
89
89
88 | ARNPS 39 467
PR D39 1481
PR D38 768 | R. Davis, A.K. Mann, L. Wo
Y. Oyama <i>et al.</i>
R.M. Bionta <i>et al.</i> | olfenstein `(BNL, F
(Kamiokande II
(IMB | PENN+)
Collab.)
Collab.) | REFID=40903
REFID=40836
REFID=40675 | | DAVIS
OYAMA
BIONTA
DURKIN | 89
89
89
88
88 | ARNPS 39 467
PR D39 1481
PR D38 768
PRL 61 1811 | R. Davis, A.K. Mann, L. Wo
Y. Oyama et al.
R.M. Bionta et al.
L.S. Durkin et al. | olfenstein (BNL, F
(Kamiokande II
(IMB
(OSU, ANL, | PENN+)
Collab.)
Collab.)
, CIT+) | REFID=40903
REFID=40836
REFID=40675
REFID=40619 | | DAVIS
OYAMA
BIONTA
DURKIN
ABRAMOWICZ | 89
89
89
88
88
88 | ARNPS 39 467
PR D39 1481
PR D38 768
PRL 61 1811
PRL 57 298 | R. Davis, A.K. Mann, L. Wo
Y. Oyama <i>et al.</i>
R.M. Bionta <i>et al.</i>
L.S. Durkin <i>et al.</i>
H. Abramowicz <i>et al.</i> | olfenstein (BNL, F
(Kamiokande II
(IMB
(OSU, ANL,
(CDHS | PENN+) Collab.) Collab.) CIT+) Collab.) | REFID=40903
REFID=40836
REFID=40675
REFID=40619
REFID=45957 | | DAVIS OYAMA BIONTA DURKIN ABRAMOWICZ ALLABY | 89
89
89
88
88
2 86 | ARNPS 39 467
PR D39 1481
PR D38 768
PRL 61 1811
PRL 57 298
PL B177 446 | R. Davis, A.K. Mann, L. Wo
Y. Oyama et al.
R.M. Bionta et al.
L.S. Durkin et al.
H. Abramowicz et al.
J.V. Allaby et al. | olfenstein (BNL, F
(Kamiokande II
(IMB
(OSU, ANL,
(CDHS
(CHARM | PENN+) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) | REFID=40903
REFID=40836
REFID=40675
REFID=40619
REFID=45957
REFID=45956 | | DAVIS OYAMA BIONTA DURKIN ABRAMOWICZ ALLABY ANGELINI | 89
89
89
88
88
2 86
86 | ARNPS 39 467
PR D39 1481
PR D38 768
PRL 61 1811
PRL 57 298
PL B177 446
PL B179 307 | R. Davis, A.K. Mann, L. Wo
Y. Oyama et al.
R.M. Bionta et al.
L.S. Durkin et al.
H. Abramowicz et al.
J.V. Allaby et al.
C. Angelini et al. | olfenstein (BNL, F
(Kamiokande II
(IMB
(OSU, ANL,
(CDHS
(CHARM
(PISA, ATHU, F | PENN+) Collab.) Collab.) CIT+) Collab.) Collab.) Collab.) PADO+) | REFID=40903
REFID=40836
REFID=40675
REFID=45957
REFID=45956
REFID=40249 | | DAVIS OYAMA BIONTA DURKIN ABRAMOWICZ ALLABY ANGELINI VUILLEUMIER | 89
89
89
88
88
2 86
86
86
86 | ARNPS 39 467
PR D39 1481
PR D38 768
PRL 61 1811
PRL 57 298
PL B177 446
PL B179 307
PL 114B 298 | R. Davis, A.K. Mann, L. Wo
Y. Oyama et al.
R.M. Bionta et al.
L.S. Durkin et al.
H. Abramowicz et al.
J.V. Allaby et al.
C. Angelini et al.
J.L. Vuilleumier et al. | olfenstein (BNL, F
(Kamiokande II
(IMB
(OSU, ANL,
(CDHS
(CHARM
(PISA, ATHU, F
(CIT, SIN, | PENN+) Collab.) Collab.) CIT+) Collab.) Collab.) ADO+) MUNI) | REFID=40903
REFID=40836
REFID=40675
REFID=40619
REFID=45956
REFID=40249
REFID=10411 | | DAVIS OYAMA BIONTA DURKIN ABRAMOWICZ ALLABY ANGELINI | 89
89
89
88
88
2 86
86 | ARNPS 39 467
PR D39 1481
PR D38 768
PRL 61 1811
PRL 57 298
PL B177 446
PL B179 307 | R. Davis, A.K. Mann, L. Wo
Y. Oyama et al.
R.M. Bionta et al.
L.S. Durkin et al.
H. Abramowicz et al.
J.V. Allaby et al.
C. Angelini et al.
J.L. Vuilleumier et al.
M.M. Boliev et al. | olfenstein (BNL, F
(Kamiokande II
(IMB
(OSU, ANL,
(CDHS
(CHARM
(PISA, ATHU, F
(CIT, SIN, |
PENN+) Collab.) Collab.) CIT+) Collab.) Collab.) Collab.) PADO+) | REFID=40903
REFID=40836
REFID=40675
REFID=40619
REFID=45957
REFID=45956
REFID=40249
REFID=10411
REFID=10380 | | DAVIS OYAMA BIONTA DURKIN ABRAMOWICZ ALLABY ANGELINI VUILLEUMIER | 89
89
89
88
88
2 86
86
86
86 | ARNPS 39 467
PR D39 1481
PR D38 768
PRL 61 1811
PRL 57 298
PL B177 446
PL B179 307
PL 114B 298
SJNP 34 787 | R. Davis, A.K. Mann, L. Wo
Y. Oyama et al.
R.M. Bionta et al.
L.S. Durkin et al.
H. Abramowicz et al.
J.V. Allaby et al.
C. Angelini et al.
J.L. Vuilleumier et al.
M.M. Boliev et al. | olfenstein (BNL, F
(Kamiokande II
(IMB
(OSU, ANL,
(CDHS
(CHARM
(PISA, ATHU, F
(CIT, SIN, | PENN+) Collab.) Collab.) . CIT+) Collab.) Collab.) 'APOO+) MUNI) (INRM) MUNI) | REFID=40903
REFID=40836
REFID=40619
REFID=45957
REFID=45956
REFID=40249
REFID=10380
REFID=10389 | | DAVIS OYAMA BIONTA DURKIN ABRAMOWICZ ALLABY ANGELINI VUILLEUMIER BOLIEV KWON BOEHM | 89
89
89
88
88
86
86
86
86
81
81
80 | ARNPS 39 467
PR D39 1481
PR D38 768
PRL 61 1811
PRL 57 298
PL B177 446
PL B179 307
PL 114B 298
SJNP 34 787
Translated from YAF 34
PR D24 1097
PL 97B 310 | R. Davis, A.K. Mann, L. Wo
Y. Oyama et al.
R.M. Bionta et al.
L.S. Durkin et al.
H. Abramowicz et al.
J.V. Allaby et al.
C. Angelini et al.
J.L. Vuilleumier et al.
M.M. Boliev et al.
1418.
H. Kwon et al.
F. Boehm et al. | olfenstein (BNL, F
(Kamiokande II
(IMB
(OSU, ANL,
(CDHS
(CHARM
(PISA, ATHU, F
(CIT, SIN,
(ILLG, CIT, ISNG, | PENN+) Collab.) Collab.) CIT+) Collab.) Collab.) PADO+) MUNI) (INRM) MUNI) MUNI) MUNI) | REFID=40903
REFID=40836
REFID=40675
REFID=40619
REFID=45957
REFID=45956
REFID=10411
REFID=10380
REFID=10389
REFID=10389 | | DAVIS OYAMA BIONTA DURKIN ABRAMOWICZ ALLABY ANGELINI VUILLEUMIER BOLIEV KWON | 89
89
89
88
88
Z 86
86
86
86
82
81 | ARNPS 39 467
PR D39 1481
PR D38 768
PRL 61 1811
PRL 57 298
PL B177 446
PL B179 307
PL 114B 298
SJNP 34 787
Translated from YAF 34
PR D24 1097 | R. Davis, A.K. Mann, L. Wo
Y. Oyama et al.
R.M. Bionta et al.
L.S. Durkin et al.
H. Abramowicz et al.
J.V. Allaby et al.
C. Angelini et al.
J.L. Vuilleumier et al.
M.M. Boliev et al.
1418.
H. Kwon et al. | olfenstein (BNL, F
(Kamiokande II
(IMB
(OSU, ANL,
(CDHS
(CHARM
(PISA, ATHU, F
(CIT, SIN, | PENN+) Collab.) Collab.) CIT+) Collab.) Collab.) PADO+) MUNI) (INRM) MUNI) MUNI) MUNI) | REFID=40903
REFID=40836
REFID=40619
REFID=45957
REFID=45956
REFID=40249
REFID=10380
REFID=10389 |